BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38603884)

  • 1. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets.
    Ren H; Hu W; Jiang T; Yao Q; Qi Y; Huang K
    Biomed Pharmacother; 2024 May; 174():116545. PubMed ID: 38603884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm.
    Wang H; Yu W; Wang Y; Wu R; Dai Y; Deng Y; Wang S; Yuan J; Tan R
    Free Radic Biol Med; 2023 Nov; 208():846-858. PubMed ID: 37776918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases.
    Cheng J; Nanayakkara G; Shao Y; Cueto R; Wang L; Yang WY; Tian Y; Wang H; Yang X
    Adv Exp Med Biol; 2017; 982():359-370. PubMed ID: 28551798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mitochondrial Approach to Cardiovascular Risk and Disease.
    Veloso CD; Belew GD; Ferreira LL; Grilo LF; Jones JG; Portincasa P; Sardão VA; Oliveira PJ
    Curr Pharm Des; 2019; 25(29):3175-3194. PubMed ID: 31470786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Dysfunction and Therapeutic Perspectives in Cardiovascular Diseases.
    Liu Y; Huang Y; Xu C; An P; Luo Y; Jiao L; Luo J; Li Y
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets.
    Todisco S; Musio B; Pesce V; Cavalluzzi MM; Petrosillo G; La Piana G; Sgobba MN; Schlosserová N; Cafferati Beltrame L; Di Lorenzo R; Tragni V; Marzulli D; Guerra L; De Grassi A; Gallo V; Volpicella M; Palese LL; Lentini G; Pierri CL
    Biochem Pharmacol; 2023 Feb; 208():115405. PubMed ID: 36603686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIRT6 in Regulation of Mitochondrial Damage and Associated Cardiac Dysfunctions: A Possible Therapeutic Target for CVDs.
    Divya KP; Kanwar N; Anuranjana PV; Kumar G; Beegum F; George KT; Kumar N; Nandakumar K; Kanwal A
    Cardiovasc Toxicol; 2024 Jun; 24(6):598-621. PubMed ID: 38689163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the mitochondrial Ca
    Lozano O; Marcos P; Salazar-Ramirez FJ; Lázaro-Alfaro AF; Sobrevia L; García-Rivas G
    Acta Physiol (Oxf); 2023 Apr; 237(4):e13946. PubMed ID: 36751976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear stress augments mitochondrial ATP generation that triggers ATP release and Ca
    Yamamoto K; Imamura H; Ando J
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1477-H1485. PubMed ID: 30141983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Dynamics: Pathogenesis and Therapeutic Targets of Vascular Diseases.
    Luan Y; Ren KD; Luan Y; Chen X; Yang Y
    Front Cardiovasc Med; 2021; 8():770574. PubMed ID: 34938787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial calcium and reactive oxygen species in cardiovascular disease.
    Murphy E; Liu JC
    Cardiovasc Res; 2023 May; 119(5):1105-1116. PubMed ID: 35986915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases.
    Shaito A; Aramouni K; Assaf R; Parenti A; Orekhov A; Yazbi AE; Pintus G; Eid AH
    Front Biosci (Landmark Ed); 2022 Mar; 27(3):105. PubMed ID: 35345337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Products as Modulators of Mitochondrial Dysfunctions Associated with Cardiovascular Diseases: Advances and Opportunities.
    Boeing T; Reis Lívero FAD; de Souza P; de Almeida DAT; Donadel G; Lourenço ELB; Gasparotto Junior A
    J Med Food; 2023 May; 26(5):279-298. PubMed ID: 37186894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment.
    Yang J; Guo Q; Feng X; Liu Y; Zhou Y
    Front Cell Dev Biol; 2022; 10():841523. PubMed ID: 35646910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells.
    Li X; Fang P; Yang WY; Chan K; Lavallee M; Xu K; Gao T; Wang H; Yang X
    Can J Physiol Pharmacol; 2017 Mar; 95(3):247-252. PubMed ID: 27925481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hippo Pathway Orchestrates Mitochondrial Quality Control: A Novel Focus on Cardiovascular Diseases.
    Tan Y; Lei C; Tang H; Zhu X; Yi G
    DNA Cell Biol; 2020 Sep; 39(9):1494-1505. PubMed ID: 32543894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting mitochondrial dynamics and redox regulation in cardiovascular diseases.
    Beg MA; Huang M; Vick L; Rao KNS; Zhang J; Chen Y
    Trends Pharmacol Sci; 2024 Apr; 45(4):290-303. PubMed ID: 38458847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac mitochondria and reactive oxygen species generation.
    Chen YR; Zweier JL
    Circ Res; 2014 Jan; 114(3):524-37. PubMed ID: 24481843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of mitochondrial dysfunction in cardiovascular disease: a brief review.
    Chistiakov DA; Shkurat TP; Melnichenko AA; Grechko AV; Orekhov AN
    Ann Med; 2018 Mar; 50(2):121-127. PubMed ID: 29237304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arterial remodeling: the role of mitochondrial metabolism in vascular smooth muscle cells.
    Qin HL; Bao JH; Tang JJ; Xu DY; Shen L
    Am J Physiol Cell Physiol; 2023 Jan; 324(1):C183-C192. PubMed ID: 36468843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.