These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38603987)

  • 21. Recent applications of artificial intelligence in RNA-targeted small molecule drug discovery.
    Morishita EC; Nakamura S
    Expert Opin Drug Discov; 2024 Apr; 19(4):415-431. PubMed ID: 38321848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast Rescoring Protocols to Improve the Performance of Structure-Based Virtual Screening Performed on Protein-Protein Interfaces.
    Singh N; Chaput L; Villoutreix BO
    J Chem Inf Model; 2020 Aug; 60(8):3910-3934. PubMed ID: 32786511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating DNA-encoded chemical libraries with virtual combinatorial library screening: Optimizing a PARP10 inhibitor.
    Lemke M; Ravenscroft H; Rueb NJ; Kireev D; Ferraris D; Franzini RM
    Bioorg Med Chem Lett; 2020 Oct; 30(19):127464. PubMed ID: 32768646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidating Protein-protein Interactions Through Computational Approaches and Designing Small Molecule Inhibitors Against them for Various Diseases.
    Sarkar S; Gulati K; Kairamkonda M; Mishra A; Poluri KM
    Curr Top Med Chem; 2018; 18(20):1719-1736. PubMed ID: 30360722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the chemical space of protein-protein interaction inhibitors through machine learning.
    Choi J; Yun JS; Song H; Kim NH; Kim HS; Yook JI
    Sci Rep; 2021 Jun; 11(1):13369. PubMed ID: 34183730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators.
    Pérez-Regidor L; Zarioh M; Ortega L; Martín-Santamaría S
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27618029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning Approaches Toward Building Predictive Models for Small Molecule Modulators of miRNA and Its Utility in Virtual Screening of Molecular Databases.
    Periwal V; Scaria V
    Methods Mol Biol; 2017; 1517():155-168. PubMed ID: 27924481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emerging frontiers in virtual drug discovery: From quantum mechanical methods to deep learning approaches.
    Gorgulla C; Jayaraj A; Fackeldey K; Arthanari H
    Curr Opin Chem Biol; 2022 Aug; 69():102156. PubMed ID: 35576813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Target identification of bioactive compounds.
    Tashiro E; Imoto M
    Bioorg Med Chem; 2012 Mar; 20(6):1910-21. PubMed ID: 22104438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking.
    Gentile F; Yaacoub JC; Gleave J; Fernandez M; Ton AT; Ban F; Stern A; Cherkasov A
    Nat Protoc; 2022 Mar; 17(3):672-697. PubMed ID: 35121854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical Structure Similarity Search for Ligand-based Virtual Screening: Methods and Computational Resources.
    Yan X; Liao C; Liu Z; Hagler AT; Gu Q; Xu J
    Curr Drug Targets; 2016; 17(14):1580-1585. PubMed ID: 26521773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active learning for computational chemogenomics.
    Reker D; Schneider P; Schneider G; Brown JB
    Future Med Chem; 2017 Mar; 9(4):381-402. PubMed ID: 28263088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving small molecule virtual screening strategies for the next generation of therapeutics.
    Wingert BM; Camacho CJ
    Curr Opin Chem Biol; 2018 Jun; 44():87-92. PubMed ID: 29920436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmaceutical Machine Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule Inhibitors of Complement Factor C1s.
    Chen JJ; Schmucker LN; Visco DP
    Biomolecules; 2018 May; 8(2):. PubMed ID: 29735903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning classification can reduce false positives in structure-based virtual screening.
    Adeshina YO; Deeds EJ; Karanicolas J
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18477-18488. PubMed ID: 32669436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalable prediction of compound-protein interactions using minwise hashing.
    Tabei Y; Yamanishi Y
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S3. PubMed ID: 24564870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Review of Computational Methods for Predicting Drug Targets.
    Huang G; Yan F; Tan D
    Curr Protein Pept Sci; 2018; 19(6):562-572. PubMed ID: 27842478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual Compound Libraries in Computer-Assisted Drug Discovery.
    van Hilten N; Chevillard F; Kolb P
    J Chem Inf Model; 2019 Feb; 59(2):644-651. PubMed ID: 30624918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational methods and tools for binding site recognition between proteins and small molecules: from classical geometrical approaches to modern machine learning strategies.
    Macari G; Toti D; Polticelli F
    J Comput Aided Mol Des; 2019 Oct; 33(10):887-903. PubMed ID: 31628659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds.
    Sadybekov AA; Sadybekov AV; Liu Y; Iliopoulos-Tsoutsouvas C; Huang XP; Pickett J; Houser B; Patel N; Tran NK; Tong F; Zvonok N; Jain MK; Savych O; Radchenko DS; Nikas SP; Petasis NA; Moroz YS; Roth BL; Makriyannis A; Katritch V
    Nature; 2022 Jan; 601(7893):452-459. PubMed ID: 34912117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.