BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38604115)

  • 1. Enhancing thermal comfort prediction in high-speed trains through machine learning and physiological signals integration.
    Zhou W; Yang M; Yu X; Peng Y; Fan C; Xu D; Xiao Q
    J Therm Biol; 2024 Apr; 121():103828. PubMed ID: 38604115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal sensation prediction model for high-speed train occupants based on skin temperatures and skin wettedness.
    Zhou W; Yang M; Peng Y; Xiao Q; Fan C; Xu D
    Int J Biometeorol; 2024 Feb; 68(2):289-304. PubMed ID: 38047941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior.
    Katić K; Li R; Zeiler W
    Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat Flux Sensing for Machine-Learning-Based Personal Thermal Comfort Modeling.
    Jung W; Jazizadeh F; Diller TE
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The analysis and optimization of thermal sensation of train drivers under occupational thermal exposure.
    Yang Z; Zhou W; Xu G; Li X; Yang M; Xiao Q; Fan C; Peng Y
    Front Public Health; 2023; 11():1164817. PubMed ID: 37361169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless, AI-enabled wearable thermal comfort sensor for energy-efficient, human-in-the-loop control of indoor temperature.
    Cho S; Nam HJ; Shi C; Kim CY; Byun SH; Agno KC; Lee BC; Xiao J; Sim JY; Jeong JW
    Biosens Bioelectron; 2023 Mar; 223():115018. PubMed ID: 36549111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Establishment Method of a Personalized Thermal Comfort Prediction Model
    Wu J; Shan C; Hu J; Sun J; Zhang A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3383-3386. PubMed ID: 31946606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuzzy Logic Controlled Simulation in Regulating Thermal Comfort and Indoor Air Quality Using a Vehicle Heating, Ventilation, and Air-Conditioning System.
    Rajeswari Subramaniam K; Cheng CT; Pang TY
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An innovative HVAC control system: Implementation and testing in a vehicular cabin.
    Fojtlín M; Fišer J; Pokorný J; Povalač A; Urbanec T; Jícha M
    J Therm Biol; 2017 Dec; 70(Pt A):64-68. PubMed ID: 29074027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BIM and Data-Driven Predictive Analysis of Optimum Thermal Comfort for Indoor Environment.
    Gan VJL; Luo H; Tan Y; Deng M; Kwok HL
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personalized ventilation.
    Melikov AK
    Indoor Air; 2004; 14 Suppl 7():157-67. PubMed ID: 15330783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.
    Schellen L; Loomans MG; de Wit MH; Olesen BW; van Marken Lichtenbelt WD
    Physiol Behav; 2012 Sep; 107(2):252-61. PubMed ID: 22877870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building.
    Peng B; Hsieh SJ
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From occupants to occupants: A review of the occupant information understanding for building HVAC occupant-centric control.
    Yang T; Bandyopadhyay A; O'Neill Z; Wen J; Dong B
    Build Simul; 2022; 15(6):913-932. PubMed ID: 34904052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning and features for the prediction of thermal sensation and comfort using data from field surveys in Cyprus.
    Pantavou K; Delibasis KK; Nikolopoulos GK
    Int J Biometeorol; 2022 Oct; 66(10):1973-1984. PubMed ID: 35895145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?
    Sekhar SC
    Indoor Air; 2016 Feb; 26(1):138-52. PubMed ID: 25626476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating machine learning models to classify occupants' perceptions of their indoor environment and sleep quality from indoor air quality.
    Fritz H; Tang M; Kinney K; Nagy Z
    J Air Waste Manag Assoc; 2022 Dec; 72(12):1381-1397. PubMed ID: 35939653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins.
    Cui W; Wu T; Ouyang Q; Zhu Y
    Indoor Air; 2017 Jan; 27(1):94-103. PubMed ID: 26895741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personal comfort models based on a 6-month experiment using environmental parameters and data from wearables.
    Tartarini F; Schiavon S; Quintana M; Miller C
    Indoor Air; 2022 Nov; 32(11):e13160. PubMed ID: 36437680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.