BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38604152)

  • 41. Ultrathin Van der Waals Antiferromagnet CrTe
    Yao J; Wang H; Yuan B; Hu Z; Wu C; Zhao A
    Adv Mater; 2022 Jun; 34(23):e2200236. PubMed ID: 35419894
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A first-principles study of electronic structure and photocatalytic performance of GaN-MX
    Khan F; Idrees M; Nguyen C; Ahmad I; Amin B
    RSC Adv; 2020 Jun; 10(41):24683-24690. PubMed ID: 35516170
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Not Available].
    Hu G; Guo H; Lv S; Li L; Wang Y; Han Y; Pan L; Xie Y; Yu W; Zhu K; Qi Q; Xian G; Zhu S; Shi J; Bao L; Lin X; Zhou W; Yang H; Gao HJ
    Adv Mater; 2024 Jul; 36(27):e2403154. PubMed ID: 38631700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proximity-Induced Tunable Magnetic Order at the Interface of All-van der Waals-Layered Heterostructures.
    Choi EM; Kim T; Cho BW; Lee YH
    ACS Nano; 2023 Aug; 17(16):15656-15665. PubMed ID: 37523780
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ferromagnetic vanadium disulfide VS
    Wu HJ; Wan YL; Zeng ZY; Hu CE; Chen XR; Geng HY
    Phys Chem Chem Phys; 2023 Apr; 25(14):10143-10154. PubMed ID: 36974982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controllable Magnetic Proximity Effect and Charge Transfer in 2D Semiconductor and Double-Layered Perovskite Manganese Oxide van der Waals Heterostructure.
    Zhang Y; Shinokita K; Watanabe K; Taniguchi T; Goto M; Kan D; Shimakawa Y; Moritomo Y; Nishihara T; Miyauchi Y; Matsuda K
    Adv Mater; 2020 Dec; 32(50):e2003501. PubMed ID: 33118213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ferromagnetic barrier induced large enhancement of tunneling magnetoresistance in van der Waals perpendicular magnetic tunnel junctions.
    Zhang X; Yang B; Guo X; Han X; Yan Y
    Nanoscale; 2021 Dec; 13(47):19993-20001. PubMed ID: 34826324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hole-Doping-Induced Perpendicular Magnetic Anisotropy and High Curie Temperature in a CrSX (X = Cl, Br, I) Semiconductor Monolayer.
    Han R; Xue X; Yan Y
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133001
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proximity-Coupling-Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures.
    Zhang L; Huang X; Dai H; Wang M; Cheng H; Tong L; Li Z; Han X; Wang X; Ye L; Han J
    Adv Mater; 2020 Sep; 32(38):e2002032. PubMed ID: 32803805
    [TBL] [Abstract][Full Text] [Related]  

  • 50. van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: enhanced optoelectronic and photocatalytic properties for water splitting.
    Idrees M; Nguyen CV; Bui HD; Ahmad I; Amin B
    Phys Chem Chem Phys; 2020 Sep; 22(36):20704-20711. PubMed ID: 32901640
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunneling Spin Valves Based on Fe
    Wang Z; Sapkota D; Taniguchi T; Watanabe K; Mandrus D; Morpurgo AF
    Nano Lett; 2018 Jul; 18(7):4303-4308. PubMed ID: 29870263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic Anisotropy Control with Curie Temperature above 400 K in a van der Waals Ferromagnet for Spintronic Device.
    Li Z; Tang M; Huang J; Qin F; Ao L; Shen Z; Zhang C; Chen P; Bi X; Qiu C; Yu Z; Zhai K; Ideue T; Wang L; Liu Z; Tian Y; Iwasa Y; Yuan H
    Adv Mater; 2022 Jul; 34(27):e2201209. PubMed ID: 35448916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Room temperature near unity spin polarization in 2D Van der Waals heterostructures.
    Zhang D; Liu Y; He M; Zhang A; Chen S; Tong Q; Huang L; Zhou Z; Zheng W; Chen M; Braun K; Meixner AJ; Wang X; Pan A
    Nat Commun; 2020 Sep; 11(1):4442. PubMed ID: 32895376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-Efficient Spin Injection in GaN at Room Temperature Through A Van der Waals Tunnelling Barrier.
    Lin D; Kang W; Wu Q; Song A; Wu X; Liu G; Wu J; Wu Y; Li X; Wu Z; Cai D; Yin J; Kang J
    Nanoscale Res Lett; 2022 Aug; 17(1):74. PubMed ID: 35969318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Efficient Room-Temperature Nonvolatile Magnetic Switching by Current in Fe
    Yan S; Tian S; Fu Y; Meng F; Li Z; Lei H; Wang S; Zhang X
    Small; 2024 Jun; 20(23):e2311430. PubMed ID: 38444270
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tunable long-range spin transport in a van der Waals Fe
    Singh AK; Gao W; Deb P
    Phys Chem Chem Phys; 2024 Jan; 26(2):895-902. PubMed ID: 38087955
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-dimensional multiferroic RuClF/AgBiP
    Liu Z; Zhou B; Wang X
    Phys Chem Chem Phys; 2024 Jun; 26(25):17869-17881. PubMed ID: 38887794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controllable electronic and magnetic properties in a two-dimensional germanene heterostructure.
    Zhang RW; Ji WX; Zhang CW; Li SS; Li P; Wang PJ; Li F; Ren MJ
    Phys Chem Chem Phys; 2016 Apr; 18(17):12169-74. PubMed ID: 27076272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics.
    Zhong D; Seyler KL; Linpeng X; Cheng R; Sivadas N; Huang B; Schmidgall E; Taniguchi T; Watanabe K; McGuire MA; Yao W; Xiao D; Fu KC; Xu X
    Sci Adv; 2017 May; 3(5):e1603113. PubMed ID: 28580423
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strain engineering on the electronic states of two-dimensional GaN/graphene heterostructure.
    Deng Z; Wang X
    RSC Adv; 2019 Aug; 9(45):26024-26029. PubMed ID: 35531004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.