These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 38604178)
1. Hybrid U-Net and Swin-transformer network for limited-angle cardiac computed tomography. Xu Y; Han S; Wang D; Wang G; Maltz JS; Yu H Phys Med Biol; 2024 Apr; 69(10):. PubMed ID: 38604178 [No Abstract] [Full Text] [Related]
2. MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer. Li Y; Sun X; Wang S; Li X; Qin Y; Pan J; Chen P Phys Med Biol; 2023 Apr; 68(9):. PubMed ID: 36889004 [No Abstract] [Full Text] [Related]
3. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
4. X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module. Feng J; Zhang H; Geng M; Chen H; Jia K; Sun Z; Li Z; Cao X; Pogue BW J Biomed Opt; 2023 Feb; 28(2):026004. PubMed ID: 36818584 [TBL] [Abstract][Full Text] [Related]
5. SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images. Li GY; Chen J; Jang SI; Gong K; Li Q Med Phys; 2024 Mar; 51(3):2096-2107. PubMed ID: 37776263 [TBL] [Abstract][Full Text] [Related]
6. A transformer-based dual-domain network for reconstructing FOV extended cone-beam CT images from truncated sinograms in radiation therapy. Gao L; Xie K; Sun J; Lin T; Sui J; Yang G; Ni X Comput Methods Programs Biomed; 2023 Nov; 241():107767. PubMed ID: 37633083 [TBL] [Abstract][Full Text] [Related]
7. Image-based scatter correction for cone-beam CT using flip swin transformer U-shape network. Zhang X; Jiang Y; Luo C; Li D; Niu T; Yu G Med Phys; 2023 Aug; 50(8):5002-5019. PubMed ID: 36734321 [TBL] [Abstract][Full Text] [Related]
8. Promising Generative Adversarial Network Based Sinogram Inpainting Method for Ultra-Limited-Angle Computed Tomography Imaging. Li Z; Cai A; Wang L; Zhang W; Tang C; Li L; Liang N; Yan B Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547346 [TBL] [Abstract][Full Text] [Related]
9. StruNet: Perceptual and low-rank regularized transformer for medical image denoising. Ma Y; Yan Q; Liu Y; Liu J; Zhang J; Zhao Y Med Phys; 2023 Dec; 50(12):7654-7669. PubMed ID: 37278312 [TBL] [Abstract][Full Text] [Related]
10. Deep learning based image reconstruction algorithm for limited-angle translational computed tomography. Wang J; Liang J; Cheng J; Guo Y; Zeng L PLoS One; 2020; 15(1):e0226963. PubMed ID: 31905225 [TBL] [Abstract][Full Text] [Related]
11. TT U-Net: Temporal Transformer U-Net for Motion Artifact Reduction Using PAD (Pseudo All-Phase Clinical-Dataset) in Cardiac CT. Deng Z; Zhang W; Chen K; Zhou Y; Tian J; Quan G; Zhao J IEEE Trans Med Imaging; 2023 Dec; 42(12):3805-3816. PubMed ID: 37651491 [TBL] [Abstract][Full Text] [Related]
12. Iterative reconstruction for limited-angle CT using implicit neural representation. Lee J; Baek J Phys Med Biol; 2024 Apr; 69(10):. PubMed ID: 38593820 [No Abstract] [Full Text] [Related]
13. A dense and U-shaped transformer with dual-domain multi-loss function for sparse-view CT reconstruction. Liu P; Fang C; Qiao Z J Xray Sci Technol; 2024; 32(2):207-228. PubMed ID: 38306086 [TBL] [Abstract][Full Text] [Related]
14. DuDoSS: Deep-learning-based dual-domain sinogram synthesis from sparsely sampled projections of cardiac SPECT. Chen X; Zhou B; Xie H; Miao T; Liu H; Holler W; Lin M; Miller EJ; Carson RE; Sinusas AJ; Liu C Med Phys; 2023 Jan; 50(1):89-103. PubMed ID: 36048541 [TBL] [Abstract][Full Text] [Related]
15. SSTU: Swin-Spectral Transformer U-Net for hyperspectral whole slide image reconstruction. Wang Y; Gu Y; Nanding A Comput Med Imaging Graph; 2024 Jun; 114():102367. PubMed ID: 38522221 [TBL] [Abstract][Full Text] [Related]
16. Texture transformer super-resolution for low-dose computed tomography. Zhou S; Yu L; Jin M Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699 [TBL] [Abstract][Full Text] [Related]
17. Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging. Hu J; Zheng S; Wang B; Luo G; Huang W; Zhang J Biomed Res Int; 2022; 2022():4431536. PubMed ID: 36531651 [TBL] [Abstract][Full Text] [Related]
18. Synthetic CT generation from MRI using 3D transformer-based denoising diffusion model. Pan S; Abouei E; Wynne J; Chang CW; Wang T; Qiu RLJ; Li Y; Peng J; Roper J; Patel P; Yu DS; Mao H; Yang X Med Phys; 2024 Apr; 51(4):2538-2548. PubMed ID: 38011588 [TBL] [Abstract][Full Text] [Related]
20. Swin-Net: A Swin-Transformer-Based Network Combing with Multi-Scale Features for Segmentation of Breast Tumor Ultrasound Images. Zhu C; Chai X; Xiao Y; Liu X; Zhang R; Yang Z; Wang Z Diagnostics (Basel); 2024 Jan; 14(3):. PubMed ID: 38337784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]