These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38604303)

  • 1. Back to the future: Comparing yeast as an outmoded artificial tracer for simulating microbial transport in karst aquifer systems to more modern approaches.
    Vucinic L; O'Connell D; Coxon C; Gill L
    Environ Pollut; 2024 May; 349():123942. PubMed ID: 38604303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved understanding of particle transport in karst groundwater using natural sediments as tracers.
    Goeppert N; Goldscheider N
    Water Res; 2019 Dec; 166():115045. PubMed ID: 31526978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.
    Magal E; Arbel Y; Caspi S; Glazman H; Greenbaum N; Yechieli Y
    J Contam Hydrol; 2013 Feb; 145():26-36. PubMed ID: 23270817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.
    Xu Z; Hu BX; Davis H; Kish S
    J Contam Hydrol; 2015 Nov; 182():131-45. PubMed ID: 26387032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle transport in a karst aquifer: natural and artificial tracer experiments with bacteria, bacteriophages and microspheres.
    Auckenthaler A; Raso G; Huggenberger P
    Water Sci Technol; 2002; 46(3):131-8. PubMed ID: 12227598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking contaminants in groundwater flowing across a river bottom within a complex karst system: Clues from hydrochemistry, stable isotopes, and tracer tests.
    Ren K; Pan X; Peng C; Chen J; Li J; Zeng J
    J Environ Manage; 2023 Sep; 342():118099. PubMed ID: 37207457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer.
    Goeppert N; Goldscheider N; Berkowitz B
    Water Res; 2020 Jul; 178():115755. PubMed ID: 32348930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study.
    Schiperski F; Zirlewagen J; Scheytt T
    Environ Sci Technol; 2016 Aug; 50(15):8028-35. PubMed ID: 27348254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple fluorescence approaches to identify rapid changes in microbial indicators at karst springs.
    Vucinic L; O'Connell D; Dubber D; Coxon C; Gill L
    J Contam Hydrol; 2023 Mar; 254():104129. PubMed ID: 36634484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tool for Forecasting the Arrival Time of a Tracer or a Pollutant at a Karst Spring.
    Preisig G; Perrochet L
    Ground Water; 2023 Jan; 61(1):111-118. PubMed ID: 35668030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow Cytometry and Fecal Indicator Bacteria Analyses for Fingerprinting Microbial Pollution in Karst Aquifer Systems.
    Vucinic L; O'Connell D; Teixeira R; Coxon C; Gill L
    Water Resour Res; 2022 May; 58(5):e2021WR029840. PubMed ID: 35859924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling solute reactivity in a phreatic solution conduit penetrating a karst aquifer.
    Field MS; Schiesser WE
    J Contam Hydrol; 2018 Oct; 217():52-70. PubMed ID: 30274863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Molecular Markers to Compare
    Bandy A; Cook K; Fryar AE; Polk J
    J Environ Qual; 2018 Jan; 47(1):88-95. PubMed ID: 29415110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Estimation of Solute Storage and Release in Karst Water Systems, South China.
    Zhang L; Luo M; Chen Z
    Int J Environ Res Public Health; 2020 Oct; 17(19):. PubMed ID: 33023167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the attenuation potential of a karst aquifer by an artificial dualtracer experiment with caffeine.
    Hillebrand O; Nödler K; Licha T; Sauter M; Geyer T
    Water Res; 2012 Oct; 46(16):5381-8. PubMed ID: 22877878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field Tracer Tests to Evaluate Transport Properties of Tryptophan and Humic Acid in Karst.
    Frank S; Goeppert N; Goldscheider N
    Ground Water; 2021 Jan; 59(1):59-70. PubMed ID: 32390185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer.
    Hillebrand O; Nödler K; Sauter M; Licha T
    Sci Total Environ; 2015 Feb; 506-507():338-43. PubMed ID: 25460968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains.
    Faulkner J; Hu BX; Kish S; Hua F
    J Contam Hydrol; 2009 Nov; 110(1-2):34-44. PubMed ID: 19767123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants.
    Einsiedl F; Radke M; Maloszewski P
    J Contam Hydrol; 2010 Sep; 117(1-4):26-36. PubMed ID: 20621388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the Fate and Transport of MS2 Bacteriophage and Sodium Fluorescein in a Karstic Chalk Aquifer.
    Matthews D; Bottrell S; West LJ; Maurice L; Farrant A; Purnell S; Coffey D
    Pathogens; 2024 Feb; 13(2):. PubMed ID: 38392906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.