BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38604369)

  • 1. Mercury supply limits methylmercury production in paddy soils.
    Zhong H; Su Y; Wu X; Nunes L; Li C; Hao Y; Liu YR; Tang W
    Sci Total Environ; 2024 Jun; 927():172335. PubMed ID: 38604369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warming inhibits Hg
    Zhang Q; Pu Q; Hao Z; Liu J; Zhang K; Meng B; Feng X
    Sci Total Environ; 2024 Jun; 930():172832. PubMed ID: 38688367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice root exudates affect microbial methylmercury production in paddy soils.
    Zhao JY; Ye ZH; Zhong H
    Environ Pollut; 2018 Nov; 242(Pt B):1921-1929. PubMed ID: 30072222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan.
    Su YB; Chang WC; Hsi HC; Lin CC
    Chemosphere; 2016 Jul; 154():375-384. PubMed ID: 27070857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review.
    Tang Z; Fan F; Deng S; Wang D
    Ecotoxicol Environ Saf; 2020 Oct; 202():110950. PubMed ID: 32800226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China.
    Yin D; He T; Yin R; Zeng L
    J Environ Sci (China); 2018 Jun; 68():194-205. PubMed ID: 29908739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of microbial communities potentially involved in mercury methylation in rice paddies surrounding typical mercury mining areas in China.
    Liu X; Ma A; Zhuang G; Zhuang X
    Microbiologyopen; 2018 Aug; 7(4):e00577. PubMed ID: 29527815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into HgSe antagonism: Minor impact on inorganic Hg mobility while potential impacts on microorganisms.
    Zhou Y; Li S; Hintelmann H; Tang W; Zhong H
    Sci Total Environ; 2024 Feb; 913():169705. PubMed ID: 38160847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative importance of aceticlastic methanogens and hydrogenotrophic methanogens on mercury methylation and methylmercury demethylation in paddy soils.
    Hao Z; Zhao L; Liu J; Pu Q; Chen J; Meng B; Feng X
    Sci Total Environ; 2024 Jan; 906():167601. PubMed ID: 37832685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the effects of sulfur input on mercury methylation in rice paddy soils.
    Lei P; Tang C; Wang Y; Wu M; Kwong RWM; Jiang T; Zhong H
    Sci Total Environ; 2021 Jul; 778():146325. PubMed ID: 33725612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil.
    Wang Y; Chen Z; Wu Y; Zhong H
    Sci Total Environ; 2019 Dec; 697():134143. PubMed ID: 31476499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastispheres as hotspots of microbially-driven methylmercury production in paddy soils.
    Hao YY; Liu HW; Zhao J; Feng J; Hao X; Huang Q; Gu B; Liu YR
    J Hazard Mater; 2023 Sep; 457():131699. PubMed ID: 37270960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools.
    Liu J; Wang J; Ning Y; Yang S; Wang P; Shaheen SM; Feng X; Rinklebe J
    Environ Int; 2019 Aug; 129():461-469. PubMed ID: 31154148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemical mercury pools regulate diverse communities of hgcA microbes and MeHg levels in paddy soils.
    Liu C; Ning Y; Liu J
    Environ Pollut; 2023 Oct; 334():122172. PubMed ID: 37437760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg.
    Wang X; Ye Z; Li B; Huang L; Meng M; Shi J; Jiang G
    Environ Sci Technol; 2014; 48(3):1878-85. PubMed ID: 24383449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?
    Li Y; Zhao J; Zhong H; Wang Y; Li H; Li YF; Liem-Nguyen V; Jiang T; Zhang Z; Gao Y; Chai Z
    Environ Sci Technol; 2019 Feb; 53(4):1844-1852. PubMed ID: 30636405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moisture contents regulate peat water-leachable concentrations of methylmercury, inorganic mercury, and dissolved organic matter from boreal peat soils.
    Sun T; Branfireun BA
    Ecotoxicol Environ Saf; 2024 Jul; 280():116573. PubMed ID: 38870737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfur-driven methylmercury production in paddies continues following soil oxidation.
    Tang W; Tang C; Lei P
    J Environ Sci (China); 2022 Sep; 119():166-174. PubMed ID: 35934461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.).
    Xu X; Yan M; Liang L; Lu Q; Han J; Liu L; Feng X; Guo J; Wang Y; Qiu G
    Environ Pollut; 2019 Jun; 249():647-654. PubMed ID: 30933762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-aged rice hull biochar stimulated the methylation of mercury and altered the microbial community in a paddy soil under controlled redox condition changes.
    Boie F; Ducey TF; Xing Y; Wang J; Rinklebe J
    J Hazard Mater; 2024 Jul; 472():134446. PubMed ID: 38696958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.