BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38604484)

  • 1. Stratified control of chemical crystallization in a pellet fluidized bed for pH-Adjusted fluoride and phosphate reduction: An experimental study.
    Hu R; Li S; Li K; Huang T; Liu Z; Wen G
    Environ Res; 2024 Jul; 252(Pt 2):118873. PubMed ID: 38604484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process Intensification for Enhanced Fluoride Removal and Recovery as Calcium Fluoride Using a Fluidized Bed Reactor.
    Sinharoy A; Lee GY; Chung CM
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barium recovery by crystallization in a fluidized-bed reactor: effects of pH, Ba/P molar ratio and seed.
    Su CC; Reano RL; Dalida ML; Lu MC
    Chemosphere; 2014 Jun; 105():100-5. PubMed ID: 24462085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution.
    Gandolfi MG; Taddei P; Siboni F; Modena E; Ginebra MP; Prati C
    Int Endod J; 2011 Oct; 44(10):938-49. PubMed ID: 21726240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Calcium Fluoride Crystallization Process for Treatment of High-Concentration Fluoride-Containing Semiconductor Industry Wastewater.
    Sinharoy A; Lee GY; Chung CM
    Int J Mol Sci; 2024 Apr; 25(7):. PubMed ID: 38612770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of low-concentration phosphorus using a fluidized raw dolomite bed.
    Ayoub GM; Kalinian H
    Water Environ Res; 2006 Apr; 78(4):353-61. PubMed ID: 16749303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison of Heterogeneous/Homogeneous Crystallization for Phosphate Recovery from Biosolids.
    Lin NH; Hsieh YH; Chuang SH; Wu CH; Huang YH
    Water Environ Res; 2018 Sep; 90(9):783-789. PubMed ID: 30208994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel carbonized bone meal for defluoridation of groundwater: Batch and column study.
    Chatterjee S; Jha S; De S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jul; 53(9):832-846. PubMed ID: 29652222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor.
    Aldaco R; Garea A; Irabien A
    Water Res; 2007 Feb; 41(4):810-8. PubMed ID: 17234235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Establishment and application of an in vitro model for apatite crystal mineralization].
    Wang J; Ni LX; Wang HG
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2009 Dec; 27(6):588-91. PubMed ID: 20077888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic fabrication of fibrin/apatite composite material.
    Yoh R; Matsumoto T; Sasaki J; Sohmura T
    J Biomed Mater Res A; 2008 Oct; 87(1):222-8. PubMed ID: 18085654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of removal of fluoride from contaminated water using shale collected from different coal mines in India.
    Biswas G; Dutta M; Dutta S; Adhikari K
    Environ Sci Pollut Res Int; 2016 May; 23(10):9418-31. PubMed ID: 26620857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions.
    Shih YJ; Abarca RRM; de Luna MDG; Huang YH; Lu MC
    Chemosphere; 2017 Apr; 173():466-473. PubMed ID: 28135681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amelogenin control over apatite crystal growth is affected by the pH and degree of ionic saturation.
    Habelitz S; Denbesten PK; Marshall SJ; Marshall GW; Li W
    Orthod Craniofac Res; 2005 Nov; 8(4):232-8. PubMed ID: 16238603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Batch fluidized bed reactor based modified biosynthetic crystals: Optimization of adsorptive properties and application in fluoride removal from groundwater.
    Wang Z; Ali A; Su J; Hu X; Zhang R; Yang W; Wu Z
    Chemosphere; 2021 Oct; 281():130841. PubMed ID: 33991902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of phosphate-containing calcium fluoride at the expense of enamel, hydroxyapatite and fluorapatite.
    Christoffersen J; Christoffersen MR; Arends J; Leonardsen ES
    Caries Res; 1995; 29(3):223-30. PubMed ID: 7621499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a new adsorbent for fluoride removal from aqueous solutions.
    Srivastav AL; Singh PK; Srivastava V; Sharma YC
    J Hazard Mater; 2013 Dec; 263 Pt 2():342-52. PubMed ID: 23711596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material.
    Kim EH; Yim SB; Jung HC; Lee EJ
    J Hazard Mater; 2006 Aug; 136(3):690-7. PubMed ID: 16504382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluoride adsorption on carboxylated aerobic granules containing Ce(III).
    Wang XH; Song RH; Yang HC; Shi YJ; Dang GB; Yang S; Zhao Y; Sun XF; Wang SG
    Bioresour Technol; 2013 Jan; 127():106-11. PubMed ID: 23131629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.