These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38604608)

  • 1. Concatenating Structural Constraint Effects at Tin for the Sequential Generation, Stabilization, and Transfer of Acyclic Aminocarbenes.
    Ruppert H; Meister A; Pfretzschner R; Vieira AF; Greb L
    J Am Chem Soc; 2024 Apr; 146(16):11515-22. PubMed ID: 38604608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calix[4]pyrrolato Stannate(II): A Tetraamido Tin(II) Dianion and Strong Metal-Centered σ-Donor.
    Ruppert H; Greb L
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202116615. PubMed ID: 35019214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dioxygen Activation and Pyrrole α-Cleavage with Calix[4]pyrrolato Aluminates: Enzyme Model by Structural Constraint.
    Sigmund LM; Ehlert C; Enders M; Graf J; Gryn'ova G; Greb L
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15632-15640. PubMed ID: 33955154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calix[4]pyrrolato gallate: square planar-coordinated gallium(iii) and its metal-ligand cooperative reactivity with CO
    Sigmund LM; Engels E; Richert N; Greb L
    Chem Sci; 2022 Sep; 13(37):11215-11220. PubMed ID: 36320463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational and Substitution Effects on the Donor and Reducing Strength of Tin(II) Porphyrinogens.
    Ruppert H; Meister A; Janßen P; Greb L
    Chemistry; 2024 May; ():e202401685. PubMed ID: 38803093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calix[4]pyrrolato Aluminates: The Effect of Ligand Modification on the Reactivity of Square-Planar Aluminum Anions.
    Ebner F; Mainik P; Greb L
    Chemistry; 2021 Mar; 27(16):5120-5124. PubMed ID: 33481319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calix[4]pyrroles as ligands: recent progress with a focus on the emerging p-block element chemistry.
    Ruppert H; Sigmund LM; Greb L
    Chem Commun (Camb); 2021 Nov; 57(89):11751-11763. PubMed ID: 34661225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Ligand Cooperativity of the Calix[4]pyrrolato Aluminate: Triggerable C-C Bond Formation and Rate Control in Catalysis.
    Ebner F; Sigmund LM; Greb L
    Angew Chem Int Ed Engl; 2020 Sep; 59(39):17118-17124. PubMed ID: 32573936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen monoxide and calix[4]pyrrolato aluminate: structural constraint enabled NO dimerization.
    Kohl SJ; Sigmund LM; Schmitt M; Greb L
    Chem Sci; 2024 Jul; 15(28):10803-10809. PubMed ID: 39027292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An isolable, crystalline complex of square-planar silicon(IV).
    Ebner F; Greb L
    Chem; 2021 Aug; 7(8):2151-2159. PubMed ID: 34435162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calix[4]pyrrolato-germane-(thf)
    Yadav R; Janßen P; Schorpp M; Greb L
    J Am Chem Soc; 2023 Aug; 145(32):17746-17754. PubMed ID: 37549106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calix[4]pyrrolato Stibenium: Lewis Superacidity by Antimony(III)-Antimony(V) Electromerism.
    Schorpp M; Yadav R; Roth D; Greb L
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202207963. PubMed ID: 35925742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry.
    Doddi A; Peters M; Tamm M
    Chem Rev; 2019 Jun; 119(12):6994-7112. PubMed ID: 30983327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible OH-bond activation and amphoterism by metal-ligand cooperativity of calix[4]pyrrolato aluminate.
    Sigmund LM; Greb L
    Chem Sci; 2020 Aug; 11(35):9611-9616. PubMed ID: 34094227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Group 14 hydrides with low valent elements for activation of small molecules.
    Mandal SK; Roesky HW
    Acc Chem Res; 2012 Feb; 45(2):298-307. PubMed ID: 21882810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dihydrogen activation by frustrated carbene-borane Lewis pairs: an experimental and theoretical study of carbene variation.
    Kronig S; Theuergarten E; Holschumacher D; Bannenberg T; Daniliuc CG; Jones PG; Tamm M
    Inorg Chem; 2011 Aug; 50(15):7344-59. PubMed ID: 21718018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and Ligand Properties of Skeletally Substituted Cyclic (Alkyl)(Amino)Carbenes (CAACs) and Their Reactivity towards Small Molecule Activation: A Theoretical Study.
    Bharadwaz P; Chetia P; Phukan AK
    Chemistry; 2017 Jul; 23(41):9926-9936. PubMed ID: 28504835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calix[4]pyrrolato Aluminate Catalyzes the Dehydrocoupling of Phenylphosphine Borane to High Molar Weight Polymers.
    Schön F; Sigmund LM; Schneider F; Hartmann D; Wiebe MA; Manners I; Greb L
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202202176. PubMed ID: 35235698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity.
    Englert L; Stoy A; Arrowsmith M; Muessig JH; Thaler M; Deißenberger A; Häfner A; Böhnke J; Hupp F; Seufert J; Mies J; Damme A; Dellermann T; Hammond K; Kupfer T; Radacki K; Thiess T; Braunschweig H
    Chemistry; 2019 Jun; 25(36):8612-8622. PubMed ID: 30974025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of rhodium(I) carbene complexes: the structural versatility of phosphino- compared with aminocarbenes.
    Miqueu K; Despagnet-Ayoub E; Dyer PW; Bourissou D; Bertrand G
    Chemistry; 2003 Dec; 9(23):5858-64. PubMed ID: 14673857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.