These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38604804)

  • 1. Molecular Dynamics Study of the Microscopic Mechanical Balance at the Three-Phase Contact Line of Interfacial Nanobubble.
    Jonosono Y; Tsuda SI; Tokumasu T; Nagashima H
    Langmuir; 2024 Apr; 40(16):8440-8449. PubMed ID: 38604804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation of Young's equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid.
    Yamaguchi Y; Kusudo H; Surblys D; Omori T; Kikugawa G
    J Chem Phys; 2019 Jan; 150(4):044701. PubMed ID: 30709259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics analysis of multiphase interfaces based on in situ extraction of the pressure distribution of a liquid droplet on a solid surface.
    Nishida S; Surblys D; Yamaguchi Y; Kuroda K; Kagawa M; Nakajima T; Fujimura H
    J Chem Phys; 2014 Feb; 140(7):074707. PubMed ID: 24559360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting.
    McHale G; Orme BV; Wells GG; Ledesma-Aguilar R
    Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the solid-fluid interfacial tensions depending on the substrate curvature: Young's equation holds for wetting around nanoscale cylinder.
    Watanabe K; Kusudo H; Bistafa C; Omori T; Yamaguchi Y
    J Chem Phys; 2022 Feb; 156(5):054701. PubMed ID: 35135251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Liquid Young's Law on SLIPS: Liquid-Liquid Interfacial Tensions and Zisman Plots.
    McHale G; Afify N; Armstrong S; Wells GG; Ledesma-Aguilar R
    Langmuir; 2022 Aug; 38(32):10032-10042. PubMed ID: 35921631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of Surface Nanobubbles without Contact Line Pinning.
    Guo Z; Wang X; Zhang X
    Langmuir; 2019 Jun; 35(25):8482-8489. PubMed ID: 31141370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain?
    Teshima H; Kusudo H; Bistafa C; Yamaguchi Y
    Nanoscale; 2022 Feb; 14(6):2446-2455. PubMed ID: 35098963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of non-reactive and reactive wetting of liquids on surfaces.
    Kumar G; Prabhu KN
    Adv Colloid Interface Sci; 2007 Jun; 133(2):61-89. PubMed ID: 17560842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems.
    Fan J; De Coninck J; Wu H; Wang F
    J Colloid Interface Sci; 2021 Mar; 585():320-327. PubMed ID: 33302048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets.
    Jabbarzadeh A
    J Colloid Interface Sci; 2024 Jul; 666():355-370. PubMed ID: 38603878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact Line Pinning Is Not Required for Nanobubble Stability on Copolymer Brushes.
    Bull DS; Nelson N; Konetski D; Bowman CN; Schwartz DK; Goodwin AP
    J Phys Chem Lett; 2018 Aug; 9(15):4239-4244. PubMed ID: 30010342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale pinning effect evaluated from deformed nanobubbles.
    Teshima H; Nishiyama T; Takahashi K
    J Chem Phys; 2017 Jan; 146(1):014708. PubMed ID: 28063422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanobubble-Induced Aggregation of Ultrafine Particles: A Molecular Dynamics Study.
    Bird E; Liang Z
    Langmuir; 2023 Jul; 39(28):9744-9756. PubMed ID: 37399536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring line tension: Thermodynamic integration during detachment of a molecular dynamics droplet.
    Shintaku M; Oga H; Kusudo H; Smith ER; Omori T; Yamaguchi Y
    J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Possibility of Changing the Wettability of Material Surface by Adjusting Gravity.
    Liu YM; Wu ZQ; Bao S; Guo WH; Li DW; He J; Zeng XB; Huang LJ; Lu QQ; Guo YZ; Chen RQ; Ye YJ; Zhang CY; Deng XD; Yin DC
    Research (Wash D C); 2020; 2020():2640834. PubMed ID: 32043083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning.
    Hong SJ; Chang FM; Chou TH; Chan SH; Sheng YJ; Tsao HK
    Langmuir; 2011 Jun; 27(11):6890-6. PubMed ID: 21545100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface modification on interfacial nanobubble morphology and contact line tension.
    Rangharajan KK; Kwak KJ; Conlisk AT; Wu Y; Prakash S
    Soft Matter; 2015 Jul; 11(26):5214-23. PubMed ID: 26041331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the effects of gas species and surface wettability on the morphology of interfacial nanobubbles.
    Hu K; Luo L; Sun X; Li H
    Nanoscale Adv; 2022 Jun; 4(13):2893-2901. PubMed ID: 36132003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.