These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38604975)
1. Synergistic Al-Al Dual-Atomic Site for Efficient Artificial Nitrogen Fixation. Biswas S; Zhou J; Chen XL; Chi C; Pan YA; Cui P; Li J; Liu C; Xia XH Angew Chem Int Ed Engl; 2024 Jun; 63(24):e202405493. PubMed ID: 38604975 [TBL] [Abstract][Full Text] [Related]
2. Highly efficient metal-free borocarbonitride catalysts for electrochemical reduction of N Shi L; Bi S; Qi Y; Ning G; Ye J J Colloid Interface Sci; 2023 Jul; 641():577-584. PubMed ID: 36963251 [TBL] [Abstract][Full Text] [Related]
3. Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency. Zhang C; Wang Z; Lei J; Ma L; Yakobson BI; Tour JM Small; 2022 Apr; 18(15):e2106327. PubMed ID: 35278039 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical N Sahoo SK; Heske J; Antonietti M; Qin Q; Oschatz M; Kühne TD ACS Appl Energy Mater; 2020 Oct; 3(10):10061-10069. PubMed ID: 33134880 [TBL] [Abstract][Full Text] [Related]
5. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Han L; Liu X; Chen J; Lin R; Liu H; Lü F; Bak S; Liang Z; Zhao S; Stavitski E; Luo J; Adzic RR; Xin HL Angew Chem Int Ed Engl; 2019 Feb; 58(8):2321-2325. PubMed ID: 30548557 [TBL] [Abstract][Full Text] [Related]
6. Boosting the Electrocatalytic Conversion of Nitrogen to Ammonia on Metal-Phthalocyanine-Based Two-Dimensional Conjugated Covalent Organic Frameworks. Zhong H; Wang M; Ghorbani-Asl M; Zhang J; Ly KH; Liao Z; Chen G; Wei Y; Biswal BP; Zschech E; Weidinger IM; Krasheninnikov AV; Dong R; Feng X J Am Chem Soc; 2021 Dec; 143(47):19992-20000. PubMed ID: 34784212 [TBL] [Abstract][Full Text] [Related]
7. Efficient and durable N Zhu X; Liu Z; Liu Q; Luo Y; Shi X; Asiri AM; Wu Y; Sun X Chem Commun (Camb); 2018 Oct; 54(80):11332-11335. PubMed ID: 30239537 [TBL] [Abstract][Full Text] [Related]
8. Cr Du H; Guo X; Kong RM; Qu F Chem Commun (Camb); 2018 Nov; 54(91):12848-12851. PubMed ID: 30374491 [TBL] [Abstract][Full Text] [Related]
9. High-Performance N Ren X; Zhao J; Wei Q; Ma Y; Guo H; Liu Q; Wang Y; Cui G; Asiri AM; Li B; Tang B; Sun X ACS Cent Sci; 2019 Jan; 5(1):116-121. PubMed ID: 30693331 [TBL] [Abstract][Full Text] [Related]
10. Unsaturated p-Metal-Based Metal-Organic Frameworks for Selective Nitrogen Reduction under Ambient Conditions. Fu Y; Li K; Batmunkh M; Yu H; Donne S; Jia B; Ma T ACS Appl Mater Interfaces; 2020 Oct; 12(40):44830-44839. PubMed ID: 32909741 [TBL] [Abstract][Full Text] [Related]
11. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature. Ghorai UK; Paul S; Ghorai B; Adalder A; Kapse S; Thapa R; Nagendra A; Gain A ACS Nano; 2021 Mar; 15(3):5230-5239. PubMed ID: 33646739 [TBL] [Abstract][Full Text] [Related]
12. Boosting Electrocatalytic Ammonia Synthesis of Bio-Inspired Porous Mo-Doped Hematite via Nitrogen Activation. Niu ZY; Jiao L; Zhang T; Zhao XM; Wang XF; Tan Z; Liu LZ; Chen S; Song XZ ACS Appl Mater Interfaces; 2022 Dec; 14(50):55559-55567. PubMed ID: 36479880 [TBL] [Abstract][Full Text] [Related]
13. Co-Doped Fe Chen X; Yin H; Yang X; Zhang W; Xiao D; Lu Z; Zhang Y; Zhang P Inorg Chem; 2022 Dec; 61(49):20123-20132. PubMed ID: 36441161 [TBL] [Abstract][Full Text] [Related]
14. Modulating Lewis acidic active sites of Fe doped Bi Wang Y; Zhang Y; Gao Y; Wang D J Colloid Interface Sci; 2023 Sep; 646():176-184. PubMed ID: 37187051 [TBL] [Abstract][Full Text] [Related]
15. Boosting electrochemical nitrogen reduction to ammonia with high efficiency using a LiNb Wang Q; Fan S; Liu L; Wen X; Wu Y; Yao R; Zhao Q; Li J; Liu G Dalton Trans; 2022 Jan; 51(3):1131-1136. PubMed ID: 34939636 [TBL] [Abstract][Full Text] [Related]
16. Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower-Like Gold Microstructures. Wang Z; Li Y; Yu H; Xu Y; Xue H; Li X; Wang H; Wang L ChemSusChem; 2018 Oct; 11(19):3480-3485. PubMed ID: 30109915 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical Generation of Catalytically Active Edge Sites in C Zhang W; Zhan S; Qin Q; Heil T; Liu X; Hwang J; Ferber TH; Hofmann JP; Oschatz M Small; 2022 Oct; 18(42):e2204116. PubMed ID: 36114151 [TBL] [Abstract][Full Text] [Related]
18. Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites. Li Y; Li J; Huang J; Chen J; Kong Y; Yang B; Li Z; Lei L; Chai G; Wen Z; Dai L; Hou Y Angew Chem Int Ed Engl; 2021 Apr; 60(16):9078-9085. PubMed ID: 33586316 [TBL] [Abstract][Full Text] [Related]
19. Iron Monomers or Trimers on Nitrogen-Doped Carbon: Which Is Better for the Electrocatalytic Nitrogen Reduction Reaction? Yang R; Gao D; Li W; Lu F; Yi D; Yang Y; Wang X ACS Appl Mater Interfaces; 2024 Jun; 16(22):28452-28460. PubMed ID: 38775640 [TBL] [Abstract][Full Text] [Related]
20. Sulfur-doped graphene for efficient electrocatalytic N Xia L; Yang J; Wang H; Zhao R; Chen H; Fang W; Asiri AM; Xie F; Cui G; Sun X Chem Commun (Camb); 2019 Mar; 55(23):3371-3374. PubMed ID: 30816888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]