BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38605047)

  • 21. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing.
    Zheng GX; Lau BT; Schnall-Levin M; Jarosz M; Bell JM; Hindson CM; Kyriazopoulou-Panagiotopoulou S; Masquelier DA; Merrill L; Terry JM; Mudivarti PA; Wyatt PW; Bharadwaj R; Makarewicz AJ; Li Y; Belgrader P; Price AD; Lowe AJ; Marks P; Vurens GM; Hardenbol P; Montesclaros L; Luo M; Greenfield L; Wong A; Birch DE; Short SW; Bjornson KP; Patel P; Hopmans ES; Wood C; Kaur S; Lockwood GK; Stafford D; Delaney JP; Wu I; Ordonez HS; Grimes SM; Greer S; Lee JY; Belhocine K; Giorda KM; Heaton WH; McDermott GP; Bent ZW; Meschi F; Kondov NO; Wilson R; Bernate JA; Gauby S; Kindwall A; Bermejo C; Fehr AN; Chan A; Saxonov S; Ness KD; Hindson BJ; Ji HP
    Nat Biotechnol; 2016 Mar; 34(3):303-11. PubMed ID: 26829319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practical dynamic de Bruijn graphs.
    Crawford VG; Kuhnle A; Boucher C; Chikhi R; Gagie T
    Bioinformatics; 2018 Dec; 34(24):4189-4195. PubMed ID: 29939217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Read mapping on de Bruijn graphs.
    Limasset A; Cazaux B; Rivals E; Peterlongo P
    BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ViQUF: De Novo Viral Quasispecies Reconstruction Using Unitig-Based Flow Networks.
    Freire B; Ladra S; Parama JR; Salmela L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1550-1562. PubMed ID: 35853050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. sgcocaller and comapr: personalised haplotype assembly and comparative crossover map analysis using single-gamete sequencing data.
    Lyu R; Tsui V; Crismani W; Liu R; Shim H; McCarthy DJ
    Nucleic Acids Res; 2022 Nov; 50(20):e118. PubMed ID: 36107768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Survey of gene splicing algorithms based on reads.
    Si X; Wang Q; Zhang L; Wu R; Ma J
    Bioengineered; 2017 Nov; 8(6):750-758. PubMed ID: 28873323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. phasebook: haplotype-aware de novo assembly of diploid genomes from long reads.
    Luo X; Kang X; Schönhuth A
    Genome Biol; 2021 Oct; 22(1):299. PubMed ID: 34706745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads.
    Bankevich A; Bzikadze AV; Kolmogorov M; Antipov D; Pevzner PA
    Nat Biotechnol; 2022 Jul; 40(7):1075-1081. PubMed ID: 35228706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HaploMaker: An improved algorithm for rapid haplotype assembly of genomic sequences.
    Fruzangohar M; Timmins WA; Kravchuk O; Taylor J
    Gigascience; 2022 May; 11():. PubMed ID: 35579550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long Range Sequencing and Validation of Insect Genome Assemblies.
    Saha S
    Methods Mol Biol; 2019; 1858():33-44. PubMed ID: 30414109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing.
    Selvaraj S; R Dixon J; Bansal V; Ren B
    Nat Biotechnol; 2013 Dec; 31(12):1111-8. PubMed ID: 24185094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LoRDEC: accurate and efficient long read error correction.
    Salmela L; Rivals E
    Bioinformatics; 2014 Dec; 30(24):3506-14. PubMed ID: 25165095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrating dilution-based sequencing and population genotypes for single individual haplotyping.
    Matsumoto H; Kiryu H
    BMC Genomics; 2014 Aug; 15(1):733. PubMed ID: 25167975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploiting next-generation sequencing to solve the haplotyping puzzle in polyploids: a simulation study.
    Motazedi E; Finkers R; Maliepaard C; de Ridder D
    Brief Bioinform; 2018 May; 19(3):387-403. PubMed ID: 28065918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads.
    Shafin K; Pesout T; Chang PC; Nattestad M; Kolesnikov A; Goel S; Baid G; Kolmogorov M; Eizenga JM; Miga KH; Carnevali P; Jain M; Carroll A; Paten B
    Nat Methods; 2021 Nov; 18(11):1322-1332. PubMed ID: 34725481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.