These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38605051)

  • 1. Controlled condensation by liquid contact-induced adaptations of molecular conformations in self-assembled monolayers.
    Bai G; Zhang H; Gao D; Fei H; Guo C; Ren M; Liu Y
    Nat Commun; 2024 Apr; 15(1):3132. PubMed ID: 38605051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulations of Water Condensation on Surfaces with Tunable Wettability.
    Ranathunga DTS; Shamir A; Dai X; Nielsen SO
    Langmuir; 2020 Jul; 36(26):7383-7391. PubMed ID: 32498521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensation of Satellite Droplets on Lubricant-Cloaked Droplets.
    Ge Q; Raza A; Li H; Sett S; Miljkovic N; Zhang T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22246-22255. PubMed ID: 32306727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dewetting from Amphiphilic Minichannel Surfaces during Condensation.
    Winter RL; McCarthy M
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7815-7825. PubMed ID: 31944655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of condensation on structured surfaces.
    Fu X; Yao Z; Hao P
    Langmuir; 2014 Nov; 30(46):14048-55. PubMed ID: 25347594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
    Tsuchiya H; Tenjimbayashi M; Moriya T; Yoshikawa R; Sasaki K; Togasawa R; Yamazaki T; Manabe K; Shiratori S
    Langmuir; 2017 Sep; 33(36):8950-8960. PubMed ID: 28826213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned condensation figures as optical diffraction gratings.
    Kumar A; Whitesides GM
    Science; 1994 Jan; 263(5143):60-2. PubMed ID: 17748349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of features on surfaces by condensation figures.
    López GP; Biebuyck HA; Frisbie CD; Whitesides GM
    Science; 1993 Apr; 260(5108):647-9. PubMed ID: 8480175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A
    Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaporation-Crystallization Method to Promote Coalescence-Induced Jumping on Superhydrophobic Surfaces.
    Han T; Choi Y; Kwon JT; Kim MH; Jo H
    Langmuir; 2020 Aug; 36(33):9843-9848. PubMed ID: 32787044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.
    Cha H; Wu A; Kim MK; Saigusa K; Liu A; Miljkovic N
    Nano Lett; 2017 Dec; 17(12):7544-7551. PubMed ID: 29178810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of water condensation on a switchable surface originated from molecular orientations.
    Chang CM; Lin YH; Reshetnyak V
    Phys Rev E; 2021 Sep; 104(3-1):034701. PubMed ID: 34654192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Nanostructured Surfaces for Efficient Condensation by Controlling Condensation Modes.
    Che Q; Wang F; Zhao X
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-Liquid Surfaces for Sustainable High-Performance Steam Condensation.
    Monga D; Guo Z; Shan L; Taba SA; Sarma J; Dai X
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13932-13941. PubMed ID: 35287435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The temperature dependent dynamics and periodicity of dropwise condensation on surfaces with wetting heterogeneities.
    Feldmann D; Pinchasik BE
    J Colloid Interface Sci; 2023 Aug; 644():146-156. PubMed ID: 37105038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.
    Ölçeroğlu E; McCarthy M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How droplets nucleate and grow on liquids and liquid impregnated surfaces.
    Anand S; Rykaczewski K; Subramanyam SB; Beysens D; Varanasi KK
    Soft Matter; 2015 Jan; 11(1):69-80. PubMed ID: 25410939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces.
    Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7805-7814. PubMed ID: 31972085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities.
    Wang X; Xu B; Chen Z; Yang Y; Cao Q
    Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.