These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 38605175)

  • 1. A pan-genome of 69 Arabidopsis thaliana accessions reveals a conserved genome structure throughout the global species range.
    Lian Q; Huettel B; Walkemeier B; Mayjonade B; Lopez-Roques C; Gil L; Roux F; Schneeberger K; Mercier R
    Nat Genet; 2024 May; 56(5):982-991. PubMed ID: 38605175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics.
    Jiao WB; Schneeberger K
    Nat Commun; 2020 Feb; 11(1):989. PubMed ID: 32080174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centromere locations and associated chromosome rearrangements in Arabidopsis lyrata and A. thaliana.
    Kawabe A; Hansson B; Hagenblad J; Forrest A; Charlesworth D
    Genetics; 2006 Jul; 173(3):1613-9. PubMed ID: 16648590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genetic and epigenetic landscape of the
    Naish M; Alonge M; Wlodzimierz P; Tock AJ; Abramson BW; Schmücker A; Mandáková T; Jamge B; Lambing C; Kuo P; Yelina N; Hartwick N; Colt K; Smith LM; Ton J; Kakutani T; Martienssen RA; Schneeberger K; Lysak MA; Berger F; Bousios A; Michael TP; Schatz MC; Henderson IR
    Science; 2021 Nov; 374(6569):eabi7489. PubMed ID: 34762468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and genomic organization of centromeric repeats in Arabidopsis species.
    Kawabe A; Nasuda S
    Mol Genet Genomics; 2005 Feb; 272(6):593-602. PubMed ID: 15586291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Looking for natural variation in chiasma frequency in Arabidopsis thaliana.
    López E; Pradillo M; Oliver C; Romero C; Cuñado N; Santos JL
    J Exp Bot; 2012 Jan; 63(2):887-94. PubMed ID: 22048037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide survey of pseudogenes in 80 fully re-sequenced Arabidopsis thaliana accessions.
    Wang L; Si W; Yao Y; Tian D; Araki H; Yang S
    PLoS One; 2012; 7(12):e51769. PubMed ID: 23272162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana.
    Ito H; Miura A; Takashima K; Kakutani T
    Mol Genet Genomics; 2007 Jan; 277(1):23-30. PubMed ID: 17033808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A De Novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny.
    Pucker B; Holtgräwe D; Rosleff Sörensen T; Stracke R; Viehöver P; Weisshaar B
    PLoS One; 2016; 11(10):e0164321. PubMed ID: 27711162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of Conserved Noncoding Sequences in Arabidopsis thaliana.
    Yocca AE; Lu Z; Schmitz RJ; Freeling M; Edger PP
    Mol Biol Evol; 2021 Jun; 38(7):2692-2703. PubMed ID: 33565589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis.
    Coelho MA; David-Palma M; Shea T; Bowers K; McGinley-Smith S; Mohammad AW; Gnirke A; Yurkov AM; Nowrousian M; Sun S; Cuomo CA; Heitman J
    PLoS Biol; 2024 Jun; 22(6):e3002682. PubMed ID: 38843310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber.
    Li H; Wang S; Chai S; Yang Z; Zhang Q; Xin H; Xu Y; Lin S; Chen X; Yao Z; Yang Q; Fei Z; Huang S; Zhang Z
    Nat Commun; 2022 Feb; 13(1):682. PubMed ID: 35115520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation in a subtelomeric region of Arabidopsis: implications for the genomic dynamics of a chromosome end.
    Kuo HF; Olsen KM; Richards EJ
    Genetics; 2006 May; 173(1):401-17. PubMed ID: 16547105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis thaliana population analysis reveals high plasticity of the genomic region spanning MSH2, AT3G18530 and AT3G18535 genes and provides evidence for NAHR-driven recurrent CNV events occurring in this location.
    Zmienko A; Samelak-Czajka A; Kozlowski P; Szymanska M; Figlerowicz M
    BMC Genomics; 2016 Nov; 17(1):893. PubMed ID: 27825302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale genomic correlations in Arabidopsis thaliana relate to chromosomal structure.
    Kendal WS; Suomela BP
    BMC Genomics; 2005 Jun; 6():82. PubMed ID: 15932642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative gene mapping in Arabidopsis lyrata chromosomes 6 and 7 and A. thaliana chromosome IV: evolutionary history, rearrangements and local recombination rates.
    Kawabe A; Hansson B; Forrest A; Hagenblad J; Charlesworth D
    Genet Res; 2006 Aug; 88(1):45-56. PubMed ID: 17014743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale computational analysis of DNA curvature and repeats in Arabidopsis and rice uncovers plant-specific genomic properties.
    Masoudi-Nejad A; Movahedi S; Jáuregui R
    BMC Genomics; 2011 May; 12():214. PubMed ID: 21548945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic variations and distinct evolutionary rate of rare alleles in Arabidopsis thaliana.
    Memon S; Jia X; Gu L; Zhang X
    BMC Evol Biol; 2016 Jan; 16():25. PubMed ID: 26817829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and comparison of three reference-quality genome assemblies for soybean.
    Valliyodan B; Cannon SB; Bayer PE; Shu S; Brown AV; Ren L; Jenkins J; Chung CY; Chan TF; Daum CG; Plott C; Hastie A; Baruch K; Barry KW; Huang W; Patil G; Varshney RK; Hu H; Batley J; Yuan Y; Song Q; Stupar RM; Goodstein DM; Stacey G; Lam HM; Jackson SA; Schmutz J; Grimwood J; Edwards D; Nguyen HT
    Plant J; 2019 Dec; 100(5):1066-1082. PubMed ID: 31433882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural divergence of chromosomal segments that arose from successive duplication events in the Arabidopsis genome.
    Ziolkowski PA; Blanc G; Sadowski J
    Nucleic Acids Res; 2003 Feb; 31(4):1339-50. PubMed ID: 12582254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.