These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38605194)

  • 1. Experimental observation of current-driven antiskyrmion sliding in stripe domains.
    He Z; Li Z; Chen Z; Wang Z; Shen J; Wang S; Song C; Zhao T; Cai J; Lin SZ; Zhang Y; Shen B
    Nat Mater; 2024 Aug; 23(8):1048-1054. PubMed ID: 38605194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confined antiskyrmion motion driven by electric current excitations.
    Guang Y; Zhang X; Liu Y; Peng L; Yasin FS; Karube K; Nakamura D; Nagaosa N; Taguchi Y; Mochizuki M; Tokura Y; Yu X
    Nat Commun; 2024 Sep; 15(1):7701. PubMed ID: 39227610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat current-driven topological spin texture transformations and helical q-vector switching.
    Yasin FS; Masell J; Karube K; Shindo D; Taguchi Y; Tokura Y; Yu X
    Nat Commun; 2023 Nov; 14(1):7094. PubMed ID: 37925467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of antiskyrmions in magnets.
    Koshibae W; Nagaosa N
    Nat Commun; 2016 Jan; 7():10542. PubMed ID: 26821932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge states and skyrmion dynamics in nanostripes of frustrated magnets.
    Leonov AO; Mostovoy M
    Nat Commun; 2017 Feb; 8():14394. PubMed ID: 28240226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials.
    Nayak AK; Kumar V; Ma T; Werner P; Pippel E; Sahoo R; Damay F; Rößler UK; Felser C; Parkin SSP
    Nature; 2017 Aug; 548(7669):561-566. PubMed ID: 28846999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping Control of Magnetic Anisotropy for Stable Antiskyrmion Formation in Schreibersite (Fe,Ni)
    Karube K; Peng L; Masell J; Hemmida M; Krug von Nidda HA; Kézsmárki I; Yu X; Tokura Y; Taguchi Y
    Adv Mater; 2022 Mar; 34(11):e2108770. PubMed ID: 35032408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiskyrmions in Ferroelectric Barium Titanate.
    Gonçalves MAP; Paściak M; Hlinka J
    Phys Rev Lett; 2024 Aug; 133(6):066802. PubMed ID: 39178440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolated skyrmion, skyrmion lattice and antiskyrmion lattice creation through magnetization reversal in Co/Pd nanostructure.
    Kandukuri S; Murthy VSN; Thiruvikraman PK
    Sci Rep; 2021 Sep; 11(1):18945. PubMed ID: 34556719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and Control of Zero-Field Antiskyrmions in Confining Geometries.
    Peng L; Iakoubovskii KV; Karube K; Taguchi Y; Tokura Y; Yu X
    Adv Sci (Weinh); 2022 Oct; 9(28):e2202950. PubMed ID: 35978271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bloch Point Quadrupole Constituting Hybrid Topological Strings Revealed with Electron Holographic Vector Field Tomography.
    Yasin FS; Masell J; Takahashi Y; Akashi T; Baba N; Karube K; Shindo D; Arima T; Taguchi Y; Tokura Y; Tanigaki T; Yu X
    Adv Mater; 2024 Apr; 36(16):e2311737. PubMed ID: 38219021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Magnetic Antiskyrmion Size and Helical Period from Nanometers to Micrometers in a D
    Ma T; Sharma AK; Saha R; Srivastava AK; Werner P; Vir P; Kumar V; Felser C; Parkin SSP
    Adv Mater; 2020 Jul; 32(28):e2002043. PubMed ID: 32484269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering.
    Zhang S; Petford-Long AK; Phatak C
    Sci Rep; 2016 Aug; 6():31248. PubMed ID: 27507196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnus-force induced skyrmion-antiskyrmion coupling in inhomogeneous racetrack.
    Silva RC; Silva RL; Pereira AR
    J Phys Condens Matter; 2021 Mar; 33(10):105802. PubMed ID: 33296891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of Magnetic Antiskyrmions in the Low Magnetization Ferrimagnet Mn
    Jena J; Stinshoff R; Saha R; Srivastava AK; Ma T; Deniz H; Werner P; Felser C; Parkin SSP
    Nano Lett; 2020 Jan; 20(1):59-65. PubMed ID: 31809059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic Skyrmion Materials.
    Tokura Y; Kanazawa N
    Chem Rev; 2021 Mar; 121(5):2857-2897. PubMed ID: 33164494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of magnetic skyrmions by surface acoustic waves.
    Yokouchi T; Sugimoto S; Rana B; Seki S; Ogawa N; Kasai S; Otani Y
    Nat Nanotechnol; 2020 May; 15(5):361-366. PubMed ID: 32231267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elliptical Bloch skyrmion chiral twins in an antiskyrmion system.
    Jena J; Göbel B; Ma T; Kumar V; Saha R; Mertig I; Felser C; Parkin SSP
    Nat Commun; 2020 Feb; 11(1):1115. PubMed ID: 32111842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures.
    Lemesh I; Litzius K; Böttcher M; Bassirian P; Kerber N; Heinze D; Zázvorka J; Büttner F; Caretta L; Mann M; Weigand M; Finizio S; Raabe J; Im MY; Stoll H; Schütz G; Dupé B; Kläui M; Beach GSD
    Adv Mater; 2018 Dec; 30(49):e1805461. PubMed ID: 30368960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling.
    Ba Y; Zhuang S; Zhang Y; Wang Y; Gao Y; Zhou H; Chen M; Sun W; Liu Q; Chai G; Ma J; Zhang Y; Tian H; Du H; Jiang W; Nan C; Hu JM; Zhao Y
    Nat Commun; 2021 Jan; 12(1):322. PubMed ID: 33436572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.