These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 38605239)

  • 21. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World.
    Fuller DQ
    Ann Bot; 2007 Nov; 100(5):903-24. PubMed ID: 17495986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rethinking underutilized cereal crops: pan-omics integration and green system biology.
    Rahim MS; Sharma V; Pragati Yadav ; Parveen A; Kumar A; Roy J; Kumar V
    Planta; 2023 Sep; 258(5):91. PubMed ID: 37777666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of inflorescence branch modifications in cereal crops.
    Koppolu R; Chen S; Schnurbusch T
    Curr Opin Plant Biol; 2022 Feb; 65():102168. PubMed ID: 35016076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication.
    Ramos-Madrigal J; Smith BD; Moreno-Mayar JV; Gopalakrishnan S; Ross-Ibarra J; Gilbert MTP; Wales N
    Curr Biol; 2016 Dec; 26(23):3195-3201. PubMed ID: 27866890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Website review: UK CropNet.
    Wixon J
    Yeast; 2000 Sep; 17(3):244-54. PubMed ID: 11025538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional cereals for production in new and variable climates.
    Henry RJ; Rangan P; Furtado A
    Curr Opin Plant Biol; 2016 Apr; 30():11-8. PubMed ID: 26828379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular, cellular, and developmental foundations of grass diversity.
    McSteen P; Kellogg EA
    Science; 2022 Aug; 377(6606):599-602. PubMed ID: 35926032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De Novo Domestication in the Multi-Omics Era.
    Jian L; Yan J; Liu J
    Plant Cell Physiol; 2022 Nov; 63(11):1592-1606. PubMed ID: 35762778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Strategies and progresses on cereal comparative genomics].
    Wang L; Chen JT
    Yi Chuan; 2007 Sep; 29(9):1055-60. PubMed ID: 17855253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes.
    Han Y; Qin S; Wessler SR
    BMC Genomics; 2013 Jan; 14():71. PubMed ID: 23369001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara.
    Li C; Zhou A; Sang T
    New Phytol; 2006; 170(1):185-93. PubMed ID: 16539615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome Editing in Cereals: Approaches, Applications and Challenges.
    Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brachypodium distachyon: making hay with a wild grass.
    Opanowicz M; Vain P; Draper J; Parker D; Doonan JH
    Trends Plant Sci; 2008 Apr; 13(4):172-7. PubMed ID: 18343709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing.
    Liu L; Lindsay PL; Jackson D
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci.
    Mamidi S; Healey A; Huang P; Grimwood J; Jenkins J; Barry K; Sreedasyam A; Shu S; Lovell JT; Feldman M; Wu J; Yu Y; Chen C; Johnson J; Sakakibara H; Kiba T; Sakurai T; Tavares R; Nusinow DA; Baxter I; Schmutz J; Brutnell TP; Kellogg EA
    Nat Biotechnol; 2020 Oct; 38(10):1203-1210. PubMed ID: 33020633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulating GA-Related Genes for Cereal Crop Improvement.
    Cheng J; Hill CB; Shabala S; Li C; Zhou M
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops.
    Zhang Y; Shen C; Shi J; Shi J; Zhang D
    J Exp Bot; 2024 Jan; 75(1):17-35. PubMed ID: 37935244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances on genomics, biology, ecology and evolution of Brachypodium, a bridging model grass system for cereals and biofuel grasses.
    Catalán P; Vogel JP
    New Phytol; 2020 Sep; 227(6):1587-1590. PubMed ID: 33439505
    [No Abstract]   [Full Text] [Related]  

  • 39. Rice--the pivotal genome in cereal comparative genetics.
    Gale M; Moore G; Devos K
    Novartis Found Symp; 2001; 236():46-53; discussion 53-8. PubMed ID: 11387986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fungus-originated genes in the genomes of cereal and pasture grasses acquired through ancient lateral transfer.
    Shinozuka H; Shinozuka M; de Vries EM; Sawbridge TI; Spangenberg GC; Cocks BG
    Sci Rep; 2020 Nov; 10(1):19883. PubMed ID: 33199756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.