These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38605655)
1. New paradigms in the study of the cholinergic system and metabolic diseases: Acetyl-and-butyrylcholinesterase. Villeda-González JD; Gómez-Olivares JL; Baiza-Gutman LA J Cell Physiol; 2024 Aug; 239(8):e31274. PubMed ID: 38605655 [TBL] [Abstract][Full Text] [Related]
2. Nicotinamide reduces inflammation and oxidative stress via the cholinergic system in fructose-induced metabolic syndrome in rats. Villeda-González JD; Gómez-Olivares JL; Baiza-Gutman LA; Manuel-Apolinar L; Damasio-Santana L; Millán-Pacheco C; Ángeles-Mejía S; Cortés-Ginez MC; Cruz-López M; Vidal-Moreno CJ; Díaz-Flores M Life Sci; 2020 Jun; 250():117585. PubMed ID: 32243928 [TBL] [Abstract][Full Text] [Related]
3. Cholinesterases in cardiac ganglia and modulation of canine intrinsic cardiac neuronal activity. Darvesh S; MacDonald SE; Losier AM; Martin E; Hopkins DA; Armour JA J Auton Nerv Syst; 1998 Jul; 71(2-3):75-84. PubMed ID: 9760044 [TBL] [Abstract][Full Text] [Related]
4. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling. Kinchen JM; Mohney RP; Pappan KL J Proteome Res; 2022 Mar; 21(3):599-611. PubMed ID: 34758617 [TBL] [Abstract][Full Text] [Related]
5. Cholinesterase's activities of infected mice by Brucella ovis. Perin G; Bottari NB; Silva AD; Jaguezeski AM; Gomes TMA; Lopes TF; Schetinger MRC; Morsch VM; Da Silva AS Microb Pathog; 2019 Jul; 132():137-140. PubMed ID: 31028864 [TBL] [Abstract][Full Text] [Related]
6. Presence of key cholinergic enzymes in human spermatozoa and seminal fluid†. Thakur B; Hasooni LP; Gera R; Mitra S; Björndahl L; Darreh-Shori T Biol Reprod; 2024 Jan; 110(1):63-77. PubMed ID: 37741056 [TBL] [Abstract][Full Text] [Related]
7. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011 [TBL] [Abstract][Full Text] [Related]
8. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Mesulam MM; Guillozet A; Shaw P; Levey A; Duysen EG; Lockridge O Neuroscience; 2002; 110(4):627-39. PubMed ID: 11934471 [TBL] [Abstract][Full Text] [Related]
9. Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Das UN Med Sci Monit; 2007 Dec; 13(12):RA214-21. PubMed ID: 18049445 [TBL] [Abstract][Full Text] [Related]
10. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. Hartmann J; Kiewert C; Duysen EG; Lockridge O; Greig NH; Klein J J Neurochem; 2007 Mar; 100(5):1421-9. PubMed ID: 17212694 [TBL] [Abstract][Full Text] [Related]
11. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Mesulam M; Guillozet A; Shaw P; Quinn B Neurobiol Dis; 2002 Feb; 9(1):88-93. PubMed ID: 11848688 [TBL] [Abstract][Full Text] [Related]
12. Acetylcholinesterase and butyrylcholinesterase activities in obese Beagle dogs before and after weight loss. Tvarijonaviciute A; Ceron JJ; Tecles F Vet Clin Pathol; 2013 Jun; 42(2):207-11. PubMed ID: 23550593 [TBL] [Abstract][Full Text] [Related]
13. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase. Petrov KA; Girard E; Nikitashina AD; Colasante C; Bernard V; Nurullin L; Leroy J; Samigullin D; Colak O; Nikolsky E; Plaud B; Krejci E J Neurosci; 2014 Sep; 34(36):11870-83. PubMed ID: 25186736 [TBL] [Abstract][Full Text] [Related]
14. Regulated Extracellular Choline Acetyltransferase Activity- The Plausible Missing Link of the Distant Action of Acetylcholine in the Cholinergic Anti-Inflammatory Pathway. Vijayaraghavan S; Karami A; Aeinehband S; Behbahani H; Grandien A; Nilsson B; Ekdahl KN; Lindblom RP; Piehl F; Darreh-Shori T PLoS One; 2013; 8(6):e65936. PubMed ID: 23840379 [TBL] [Abstract][Full Text] [Related]
15. Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters. Nassenstein C; Wiegand S; Lips KS; Li G; Klein J; Kummer W Int Immunopharmacol; 2015 Nov; 29(1):173-80. PubMed ID: 26278668 [TBL] [Abstract][Full Text] [Related]
16. On functions of cholinesterases during embryonic development. Paraoanu LE; Steinert G; Klaczinski J; Becker-Röck M; Bytyqi A; Layer PG J Mol Neurosci; 2006; 30(1-2):201-4. PubMed ID: 17192676 [TBL] [Abstract][Full Text] [Related]
17. Piperazine derivatives with potent drug moiety as efficient acetylcholinesterase, butyrylcholinesterase, and glutathione S-transferase inhibitors. Karaytuğ MO; Balcı N; Türkan F; Gürbüz M; Demirkol ME; Namlı Z; Tamam L; Gülçin İ J Biochem Mol Toxicol; 2023 Feb; 37(2):e23259. PubMed ID: 36419212 [TBL] [Abstract][Full Text] [Related]
18. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Kumar R; Nordberg A; Darreh-Shori T Brain; 2016 Jan; 139(Pt 1):174-92. PubMed ID: 26525916 [TBL] [Abstract][Full Text] [Related]
19. Modeling effects of oxyanion hole on the ester hydrolysis catalyzed by human cholinesterases. Gao D; Zhan CG J Phys Chem B; 2005 Dec; 109(48):23070-6. PubMed ID: 16854005 [TBL] [Abstract][Full Text] [Related]