BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38606185)

  • 21. Text mining for identification of biological entities related to antibiotic resistant organisms.
    Fortunato Costa K; Almeida Araújo F; Morais J; Lisboa Frances CR; Ramos RTJ
    PeerJ; 2022; 10():e13351. PubMed ID: 35539017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IsoFrog: a reversible jump Markov Chain Monte Carlo feature selection-based method for predicting isoform functions.
    Liu Y; Yang C; Li HD; Wang J
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37647643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overview of the BioCreative VI Precision Medicine Track: mining protein interactions and mutations for precision medicine.
    Islamaj Dogan R; Kim S; Chatr-Aryamontri A; Wei CH; Comeau DC; Antunes R; Matos S; Chen Q; Elangovan A; Panyam NC; Verspoor K; Liu H; Wang Y; Liu Z; Altinel B; Hüsünbeyi ZM; Özgür A; Fergadis A; Wang CK; Dai HJ; Tran T; Kavuluru R; Luo L; Steppi A; Zhang J; Qu J; Lu Z
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30689846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discriminative and informative features for biomolecular text mining with ensemble feature selection.
    Van Landeghem S; Abeel T; Saeys Y; Van de Peer Y
    Bioinformatics; 2010 Sep; 26(18):i554-60. PubMed ID: 20823321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning.
    Founta K; Dafou D; Kanata E; Sklaviadis T; Zanos TP; Gounaris A; Xanthopoulos K
    Mol Med; 2023 Jan; 29(1):12. PubMed ID: 36694130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BatteryDataExtractor: battery-aware text-mining software embedded with BERT models.
    Huang S; Cole JM
    Chem Sci; 2022 Oct; 13(39):11487-11495. PubMed ID: 36348711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Text mining for modeling of protein complexes enhanced by machine learning.
    Badal VD; Kundrotas PJ; Vakser IA
    Bioinformatics; 2021 May; 37(4):497-505. PubMed ID: 32960948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global Text Mining and Development of Pharmacogenomic Knowledge Resource for Precision Medicine.
    Guin D; Rani J; Singh P; Grover S; Bora S; Talwar P; Karthikeyan M; Satyamoorthy K; Adithan C; Ramachandran S; Saso L; Hasija Y; Kukreti R
    Front Pharmacol; 2019; 10():839. PubMed ID: 31447668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The feature selection bias problem in relation to high-dimensional gene data.
    Krawczuk J; Łukaszuk T
    Artif Intell Med; 2016 Jan; 66():63-71. PubMed ID: 26674595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting lung cancer survival based on clinical data using machine learning: A review.
    Altuhaifa FA; Win KT; Su G
    Comput Biol Med; 2023 Oct; 165():107338. PubMed ID: 37625260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection.
    Botsis T; Nguyen MD; Woo EJ; Markatou M; Ball R
    J Am Med Inform Assoc; 2011; 18(5):631-8. PubMed ID: 21709163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ECMarker: interpretable machine learning model identifies gene expression biomarkers predicting clinical outcomes and reveals molecular mechanisms of human disease in early stages.
    Jin T; Nguyen ND; Talos F; Wang D
    Bioinformatics; 2021 May; 37(8):1115-1124. PubMed ID: 33305308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning.
    Li Y; Guo Z; Gao X; Wang G
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning approaches to analysing textual injury surveillance data: a systematic review.
    Vallmuur K
    Accid Anal Prev; 2015 Jun; 79():41-9. PubMed ID: 25795924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of network link prediction in drug discovery.
    Abbas K; Abbasi A; Dong S; Niu L; Yu L; Chen B; Cai SM; Hasan Q
    BMC Bioinformatics; 2021 Apr; 22(1):187. PubMed ID: 33845763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying Circular RNA and Predicting Its Regulatory Interactions by Machine Learning.
    Zhang G; Deng Y; Liu Q; Ye B; Dai Z; Chen Y; Dai X
    Front Genet; 2020; 11():655. PubMed ID: 32849764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel approach to predicting the synergy of anti-cancer drug combinations using document-based feature extraction.
    Shim Y; Lee M; Kim PJ; Kim HG
    BMC Bioinformatics; 2022 May; 23(1):163. PubMed ID: 35513784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing predictions of antimicrobial resistance of pathogens by expanding the potential resistance gene repertoire using a pan-genome-based feature selection approach.
    Yang MR; Wu YW
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):131. PubMed ID: 35428201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.