BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38606203)

  • 1. Highly Anti-Markovnikov Selective Oxidative Arene Alkenylation Using Ir(I) Catalyst Precursors and Cu(II) Carboxylates.
    Ketcham H; Zhu W; Gunnoe TB
    Organometallics; 2024 Apr; 43(7):774-786. PubMed ID: 38606203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation.
    Zhu W; Gunnoe TB
    Acc Chem Res; 2020 Apr; 53(4):920-936. PubMed ID: 32239913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pd(II) and Rh(I) Catalytic Precursors for Arene Alkenylation: Comparative Evaluation of Reactivity and Mechanism Based on Experimental and Computational Studies.
    Bennett MT; Jia X; Musgrave CB; Zhu W; Goddard WA; Gunnoe TB
    J Am Chem Soc; 2023 Jul; 145(28):15507-15527. PubMed ID: 37392467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Properties of [PSiP] Pincer Cobalt(II) Chlorides Supported by Trimethylphosphine for Alkene Hydrosilylation Reactions.
    Zhang M; Dong Y; Li Q; Sun H; Li X
    Inorg Chem; 2024 May; 63(19):8807-8815. PubMed ID: 38688019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markovnikov versus anti-Markovnikov Hydrophosphination: Divergent Reactivity Using an Iron(II) β-Diketiminate Pre-Catalyst.
    King AK; Gallagher KJ; Mahon MF; Webster RL
    Chemistry; 2017 Jul; 23(38):9039-9043. PubMed ID: 28544315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu(II) carboxylate arene C─H functionalization: Tuning for nonradical pathways.
    Kong F; Chen S; Chen J; Liu C; Zhu W; Dickie DA; Schinski WL; Zhang S; Ess DH; Gunnoe TB
    Sci Adv; 2022 Aug; 8(34):eadd1594. PubMed ID: 36001664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general study of [(eta5-Cp')2Ti(eta2-Me3SiC2SiMe3)]-catalyzed hydroamination of terminal alkynes: regioselective formation of Markovnikov and anti-Markovnikov products and mechanistic explanation (Cp'=C5H5, C5H4Et, C5Me5).
    Tillack A; Jiao H; Garcia Castro I; Hartung CG; Beller M
    Chemistry; 2004 May; 10(10):2409-20. PubMed ID: 15146514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic Pt-Catalyzed Heterogeneous Anti-Markovnikov C-N Formation: Pt
    Ma X; An Z; Song H; Shu X; Xiang X; He J
    J Am Chem Soc; 2020 May; 142(19):9017-9027. PubMed ID: 32315522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic Studies of Ruthenium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes: Intermediates and Evidence for Catalysis through pi-Arene Complexes.
    Takaya J; Hartwig JF
    J Am Chem Soc; 2005 Apr; 127(16):5756-7. PubMed ID: 15839651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.
    Margrey KA; Nicewicz DA
    Acc Chem Res; 2016 Sep; 49(9):1997-2006. PubMed ID: 27588818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes.
    Boller TM; Murphy JM; Hapke M; Ishiyama T; Miyaura N; Hartwig JF
    J Am Chem Soc; 2005 Oct; 127(41):14263-78. PubMed ID: 16218621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a "Capping Arene" Ligand: Access to Aerobic Catalysis.
    Chen J; Nielsen RJ; Goddard WA; McKeown BA; Dickie DA; Gunnoe TB
    J Am Chem Soc; 2018 Dec; 140(49):17007-17018. PubMed ID: 30495938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The scope and mechanism of palladium-catalysed Markovnikov alkoxycarbonylation of alkenes.
    Li H; Dong K; Jiao H; Neumann H; Jackstell R; Beller M
    Nat Chem; 2016 Dec; 8(12):1159-1166. PubMed ID: 27874861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Selectivity through Synergy between Catalysts, Silanes and Reaction Conditions in Cobalt-Catalyzed Hydrosilylation of Dienes and Terminal Alkenes.
    Raya B; Jing S; RajanBabu TV
    ACS Catal; 2017 Apr; 7(4):2275-2283. PubMed ID: 28593082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimethylsulfoxide as a ligand for RhI and IrI complexes--isolation, structure, and reactivity towards X-H bonds (X=H, OH, OCH3).
    Dorta R; Rozenberg H; Shimon LJ; Milstein D
    Chemistry; 2003 Nov; 9(21):5237-49. PubMed ID: 14613132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-selective synthesis and structures of alkynyl, acyl, and ketonyl intermediates in anti-Markovnikov and Markovnikov hydrations of a terminal alkyne with a water-soluble iridium aqua complex in water.
    Ogo S; Uehara K; Abura T; Watanabe Y; Fukuzumi S
    J Am Chem Soc; 2004 Dec; 126(50):16520-7. PubMed ID: 15600356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodium-NHC-Catalyzed gem-Specific O-Selective Hydropyridonation of Terminal Alkynes.
    Galiana-Cameo M; Romeo R; Urriolabeitia A; Passarelli V; Pérez-Torrente JJ; Polo V; Castarlenas R
    Angew Chem Int Ed Engl; 2022 May; 61(20):e202117006. PubMed ID: 35262264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markovnikov Hydrosilylation of Alkynes with Tertiary Silanes Catalyzed by Dinuclear Cobalt Carbonyl Complexes with NHC Ligation.
    Wang D; Lai Y; Wang P; Leng X; Xiao J; Deng L
    J Am Chem Soc; 2021 Aug; 143(32):12847-12856. PubMed ID: 34347477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formyloxyl radical: electrophilicity, C-H bond activation and anti-Markovnikov selectivity in the oxidation of aliphatic alkenes.
    Somekh M; Iron MA; Khenkin AM; Neumann R
    Chem Sci; 2020 Oct; 11(42):11584-11591. PubMed ID: 34094405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodium-Catalyzed Oxidative Alkenylation of Anisole: Control of Regioselectivity.
    Reid CW; Gunnoe TB
    Organometallics; 2024 Jun; 43(12):1362-1376. PubMed ID: 38938896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.