These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38606324)

  • 1. Compressing and Swelling To Study the Structure of Extremely Soft Bottlebrush Networks Prepared by ROMP.
    Sarapas JM; Chan EP; Rettner EM; Beers KL
    Macromolecules; 2018; 51(6):. PubMed ID: 38606324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.
    Radzinski SC; Foster JC; Matson JB
    Macromol Rapid Commun; 2016 Apr; 37(7):616-21. PubMed ID: 26847467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grubbs' and Schrock's Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes-Synthesis, Characterization, Properties and Applications.
    Choinopoulos I
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversibly Cross-linkable Bottlebrush Polymers as Pressure-Sensitive Adhesives.
    Arrington KJ; Radzinski SC; Drummey KJ; Long TE; Matson JB
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26662-26668. PubMed ID: 30062885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of poly(ethylene glycol) bottlebrush networks via ring-opening metathesis polymerization.
    Clarke BR; Tew GN
    J Polym Sci (2020); 2022 May; 60(9):1501-1510. PubMed ID: 35967758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group.
    Radzinski SC; Foster JC; Chapleski RC; Troya D; Matson JB
    J Am Chem Soc; 2016 Jun; 138(22):6998-7004. PubMed ID: 27219866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-soluble polyphosphonate-based bottlebrush copolymers
    Resendiz-Lara DA; Azhdari S; Gojzewski H; Gröschel AH; Wurm FR
    Chem Sci; 2023 Oct; 14(40):11273-11282. PubMed ID: 37860667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile Light-Mediated Synthesis of Degradable Bottlebrush Polymers Using α-Lipoic Acid.
    Lee D; Wang H; Jiang SY; Verduzco R
    Angew Chem Int Ed Engl; 2024 Aug; ():e202409323. PubMed ID: 39150823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Weight Dependence of Zero-Shear Viscosity in Atactic Polypropylene Bottlebrush Polymers.
    Dalsin SJ; Hillmyer MA; Bates FS
    ACS Macro Lett; 2014 May; 3(5):423-427. PubMed ID: 35590775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular understanding for large deformations of soft bottlebrush polymer networks.
    Cai LH
    Soft Matter; 2020 Jul; 16(27):6259-6264. PubMed ID: 32667000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-Shell Gyroid in ABC Bottlebrush Block Terpolymers.
    Cui S; Zhang B; Shen L; Bates FS; Lodge TP
    J Am Chem Soc; 2022 Nov; 144(47):21719-21727. PubMed ID: 36379011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Bottlebrush Polymer Networks: Self-Healing in Super-Soft Materials.
    Self JL; Sample CS; Levi AE; Li K; Xie R; de Alaniz JR; Bates CM
    J Am Chem Soc; 2020 Apr; 142(16):7567-7573. PubMed ID: 32227998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottlebrush Amphiphilic Polymer Co-Networks.
    Clarke BR; Tew GN
    Macromolecules; 2022 Jun; 55(12):5131-5139. PubMed ID: 37485288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximizing Contact of Supersoft Bottlebrush Networks with Rough Surfaces To Promote Particulate Removal.
    Duncan TT; Chan EP; Beers KL
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45310-45318. PubMed ID: 31714735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marriage of Organic and Grubbs Catalysts for Tandem Synthesis of Bottlebrush Polyesters.
    Huang Y; Zhao C; Zhang B; Li H; Zhao J
    ACS Macro Lett; 2023 Dec; 12(12):1711-1717. PubMed ID: 38039396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Step Divergent Synthesis of Monodisperse and Ultra-Long Bottlebrush Polymers from an Easily Purifiable ROMP Monomer.
    Yamauchi Y; Horimoto NN; Yamada K; Matsushita Y; Takeuchi M; Ishida Y
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1528-1534. PubMed ID: 33058482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization.
    Lin TP; Chang AB; Chen HY; Liberman-Martin AL; Bates CM; Voegtle MJ; Bauer CA; Grubbs RH
    J Am Chem Soc; 2017 Mar; 139(10):3896-3903. PubMed ID: 28221030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Bottlebrush Polymers with Spontaneous Self-Assembly for Dielectric Generators.
    Adeli Y; Raman Venkatesan T; Mezzenga R; Nüesch FA; Opris DM
    ACS Appl Polym Mater; 2024 May; 6(9):4999-5010. PubMed ID: 38752017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Demand Cross-Linkable Bottlebrush Polymers for Voltage-Driven Artificial Muscles.
    Adeli Y; Owusu F; Nüesch FA; Opris DM
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):20410-20420. PubMed ID: 37042624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Processing of Bottlebrush Coatings through UV-Induced Cross-Linking.
    Mei H; Mah AH; Hu Z; Li Y; Terlier T; Stein GE; Verduzco R
    ACS Macro Lett; 2020 Aug; 9(8):1135-1142. PubMed ID: 35653204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.