These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38606392)

  • 41. Speech Recognition for Environmental Control: Effect of Microphone Type, Dysarthria, and Severity on Recognition Results.
    Fager SK; Burnfield JM
    Assist Technol; 2015; 27(4):199-207. PubMed ID: 26691559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automatic speech recognition in cocktail-party situations: a specific training for separated speech.
    Marti A; Cobos M; Lopez JJ
    J Acoust Soc Am; 2012 Feb; 131(2):1529-35. PubMed ID: 22352522
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic speech recognition performance for digital scribes: a performance comparison between general-purpose and specialized models tuned for patient-clinician conversations.
    Tran BD; Mangu R; Tai-Seale M; Lafata JE; Zheng K
    AMIA Annu Symp Proc; 2022; 2022():1072-1080. PubMed ID: 37128439
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic Assessment of Intelligibility in Noise in Parkinson Disease: Validation Study.
    Moya-Galé G; Walsh SJ; Goudarzi A
    J Med Internet Res; 2022 Oct; 24(10):e40567. PubMed ID: 36264608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of sEMG sensors and algorithms for silent speech recognition.
    Meltzner GS; Heaton JT; Deng Y; De Luca G; Roy SH; Kline JC
    J Neural Eng; 2018 Aug; 15(4):046031. PubMed ID: 29855428
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction between people with dysarthria and speech recognition systems: A review.
    Jaddoh A; Loizides F; Rana O
    Assist Technol; 2023 Jul; 35(4):330-338. PubMed ID: 35435810
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimation of phoneme-specific HMM topologies for the automatic recognition of dysarthric speech.
    Caballero-Morales SO
    Comput Math Methods Med; 2013; 2013():297860. PubMed ID: 24222784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Impact of Clear Speech on the Perceptual and Acoustic Properties of Fricative-Vowel Sequences in Speakers With Dysarthria.
    Martel-Sauvageau V; Breton M; Chabot A; Langlois M
    Am J Speech Lang Pathol; 2021 Jun; 30(3S):1410-1428. PubMed ID: 33784184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatic Speech Recognition Performance Improvement for Mandarin Based on Optimizing Gain Control Strategy.
    Wang D; Wei Y; Zhang K; Ji D; Wang Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of dysarthric speech and an analysis on velopharyngeal incompetence.
    Vijayalakshmi P; Reddy MR
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3759-62. PubMed ID: 17946202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Auditory discrimination as a condition for E-learning based Speech Therapy: a proposal for an auditory discrimination test (ADT) for adult dysarthric speakers.
    Beijer LJ; Rietveld AC; van Stiphout AJ
    J Commun Disord; 2011; 44(6):701-18. PubMed ID: 21719027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automatic prediction of intelligible speaking rate for individuals with ALS from speech acoustic and articulatory samples.
    Wang J; Kothalkar PV; Kim M; Bandini A; Cao B; Yunusova Y; Campbell TF; Heitzman D; Green JR
    Int J Speech Lang Pathol; 2018 Nov; 20(6):669-679. PubMed ID: 30409057
    [No Abstract]   [Full Text] [Related]  

  • 53. Errors on a Speech-in-Babble Sentence Recognition Test Reveal Individual Differences in Acoustic Phonetic Perception and Babble Misallocations.
    Bernstein LE; Eberhardt SP; Auer ET
    Ear Hear; 2021; 42(3):673-690. PubMed ID: 33928926
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of high-frequency spectral components in computer recognition of dysarthric speech based on a Mel-cepstral stochastic model.
    Polur PD; Miller GE
    J Rehabil Res Dev; 2005; 42(3):363-71. PubMed ID: 16187248
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease.
    Vásquez-Correa JC; Orozco-Arroyave JR; Bocklet T; Nöth E
    J Commun Disord; 2018; 76():21-36. PubMed ID: 30149241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Syllabic strength and lexical boundary decisions in the perception of hypokinetic dysarthric speech.
    Liss JM; Spitzer S; Caviness JN; Adler C; Edwards B
    J Acoust Soc Am; 1998 Oct; 104(4):2457-66. PubMed ID: 10491707
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward phonetic intelligibility testing in dysarthria.
    Kent RD; Weismer G; Kent JF; Rosenbek JC
    J Speech Hear Disord; 1989 Nov; 54(4):482-99. PubMed ID: 2811329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Retrospective Analysis of Clinical Performance of an Estonian Speech Recognition System for Radiology: Effects of Different Acoustic and Language Models.
    Paats A; Alumäe T; Meister E; Fridolin I
    J Digit Imaging; 2018 Oct; 31(5):615-621. PubMed ID: 29713836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [A multiscale feature extraction algorithm for dysarthric speech recognition].
    Zhao J; Xue P; Bai J; Shi C; Yuan B; Shi T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Feb; 40(1):44-50. PubMed ID: 36854547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.