These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38606397)

  • 21. Predicting Visual Fixations.
    Kümmerer M; Bethge M
    Annu Rev Vis Sci; 2023 Sep; 9():269-291. PubMed ID: 37419107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling Human Visual Search in Natural Scenes: A Combined Bayesian Searcher and Saliency Map Approach.
    Bujia G; Sclar M; Vita S; Solovey G; Kamienkowski JE
    Front Syst Neurosci; 2022; 16():882315. PubMed ID: 35712044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Saccadic model of eye movements for free-viewing condition.
    Le Meur O; Liu Z
    Vision Res; 2015 Nov; 116(Pt B):152-64. PubMed ID: 25724662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining optical coherence tomography with visual field data to rapidly detect disease progression in glaucoma: a diagnostic accuracy study.
    Garway-Heath DF; Zhu H; Cheng Q; Morgan K; Frost C; Crabb DP; Ho TA; Agiomyrgiannakis Y
    Health Technol Assess; 2018 Jan; 22(4):1-106. PubMed ID: 29384083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust and Interpretable Convolutional Neural Networks to Detect Glaucoma in Optical Coherence Tomography Images.
    Thakoor KA; Koorathota SC; Hood DC; Sajda P
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2456-2466. PubMed ID: 33290209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advancing glaucoma detection with convolutional neural networks: a paradigm shift in ophthalmology.
    Haja SA; Mahadevappa V
    Rom J Ophthalmol; 2023; 67(3):222-237. PubMed ID: 37876506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning to Predict Sequences of Human Visual Fixations.
    Jiang M; Boix X; Roig G; Xu J; Van Gool L; Zhao Q
    IEEE Trans Neural Netw Learn Syst; 2016 Jun; 27(6):1241-52. PubMed ID: 26761903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting demographic characteristics from anterior segment OCT images with deep learning: A study protocol.
    Lee YJ; Sun S; Kim YK
    PLoS One; 2022; 17(8):e0270493. PubMed ID: 35951641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning for predicting uncorrected refractive error using posterior segment optical coherence tomography images.
    Yoo TK; Ryu IH; Kim JK; Lee IS
    Eye (Lond); 2022 Oct; 36(10):1959-1965. PubMed ID: 34611313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of oedema on optical coherence tomography images using deep learning model trained on noisy clinical data.
    Potapenko I; Kristensen M; Thiesson B; Ilginis T; Lykke Sørensen T; Nouri Hajari J; Fuchs J; Hamann S; la Cour M
    Acta Ophthalmol; 2022 Feb; 100(1):103-110. PubMed ID: 33991170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining Optical Coherence Tomography and Fundus Photography to Improve Glaucoma Screening.
    Watanabe T; Hiratsuka Y; Kita Y; Tamura H; Kawasaki R; Yokoyama T; Kawashima M; Nakano T; Yamada M
    Diagnostics (Basel); 2022 Apr; 12(5):. PubMed ID: 35626256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression.
    Xu L; Asaoka R; Kiwaki T; Murata H; Fujino Y; Matsuura M; Hashimoto Y; Asano S; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Am J Ophthalmol; 2020 Oct; 218():304-313. PubMed ID: 32387432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Augmented saliency model using automatic 3D head pose detection and learned gaze following in natural scenes.
    Parks D; Borji A; Itti L
    Vision Res; 2015 Nov; 116(Pt B):113-26. PubMed ID: 25448115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On metrics for measuring scanpath similarity.
    Fahimi R; Bruce NDB
    Behav Res Methods; 2021 Apr; 53(2):609-628. PubMed ID: 32779104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical validation of saliency maps for understanding deep neural networks in ophthalmology.
    Ayhan MS; Kümmerle LB; Kühlewein L; Inhoffen W; Aliyeva G; Ziemssen F; Berens P
    Med Image Anal; 2022 Apr; 77():102364. PubMed ID: 35101727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 3D Deep Learning System for Detecting Referable Glaucoma Using Full OCT Macular Cube Scans.
    Russakoff DB; Mannil SS; Oakley JD; Ran AR; Cheung CY; Dasari S; Riyazzuddin M; Nagaraj S; Rao HL; Chang D; Chang RT
    Transl Vis Sci Technol; 2020 Feb; 9(2):12. PubMed ID: 32704418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-Depth Evaluation of Saliency Maps for Interpreting Convolutional Neural Network Decisions in the Diagnosis of Glaucoma Based on Fundus Imaging.
    Sigut J; Fumero F; Estévez J; Alayón S; Díaz-Alemán T
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
    Virgili G; Menchini F; Casazza G; Hogg R; Das RR; Wang X; Michelessi M
    Cochrane Database Syst Rev; 2015 Jan; 1(1):CD008081. PubMed ID: 25564068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies to Improve Convolutional Neural Network Generalizability and Reference Standards for Glaucoma Detection From OCT Scans.
    Thakoor KA; Li X; Tsamis E; Zemborain ZZ; De Moraes CG; Sajda P; Hood DC
    Transl Vis Sci Technol; 2021 Apr; 10(4):16. PubMed ID: 34003990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.