These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38606678)
1. Coordinated hydraulic traits influence the two phases of time to hydraulic failure in five temperate tree species differing in stomatal stringency. Waite PA; Kumar M; Link RM; Schuldt B Tree Physiol; 2024 May; 44(5):. PubMed ID: 38606678 [TBL] [Abstract][Full Text] [Related]
2. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Pivovaroff AL; Cook VMW; Santiago LS Plant Cell Environ; 2018 Nov; 41(11):2617-2626. PubMed ID: 29904932 [TBL] [Abstract][Full Text] [Related]
3. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Skelton RP; West AG; Dawson TE Proc Natl Acad Sci U S A; 2015 May; 112(18):5744-9. PubMed ID: 25902534 [TBL] [Abstract][Full Text] [Related]
4. Drought survival in conifer species is related to the time required to cross the stomatal safety margin. Petek-Petrik A; Petrík P; Lamarque LJ; Cochard H; Burlett R; Delzon S J Exp Bot; 2023 Nov; 74(21):6847-6859. PubMed ID: 37681745 [TBL] [Abstract][Full Text] [Related]
5. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197 [TBL] [Abstract][Full Text] [Related]
6. Coordination and trade-offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry. Fu X; Meinzer FC; Woodruff DR; Liu YY; Smith DD; McCulloh KA; Howard AR Plant Cell Environ; 2019 Jul; 42(7):2245-2258. PubMed ID: 30820970 [TBL] [Abstract][Full Text] [Related]
7. Prediction of temperate broadleaf tree species mortality in arid limestone habitats with stomatal safety margins. Chen Z; Li S; Luan J; Zhang Y; Zhu S; Wan X; Liu S Tree Physiol; 2019 Aug; 39(8):1428-1437. PubMed ID: 30977822 [TBL] [Abstract][Full Text] [Related]
8. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric-anisohydric spectrum. Chen Z; Zhang Y; Yuan W; Zhu S; Pan R; Wan X; Liu S Tree Physiol; 2021 Sep; 41(9):1601-1610. PubMed ID: 33693879 [TBL] [Abstract][Full Text] [Related]
9. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Tombesi S; Nardini A; Farinelli D; Palliotti A Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791 [TBL] [Abstract][Full Text] [Related]
10. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Blackman CJ; Creek D; Maier C; Aspinwall MJ; Drake JE; Pfautsch S; O'Grady A; Delzon S; Medlyn BE; Tissue DT; Choat B Tree Physiol; 2019 Jun; 39(6):910-924. PubMed ID: 30865274 [TBL] [Abstract][Full Text] [Related]
11. Plant resistance to drought depends on timely stomatal closure. Martin-StPaul N; Delzon S; Cochard H Ecol Lett; 2017 Nov; 20(11):1437-1447. PubMed ID: 28922708 [TBL] [Abstract][Full Text] [Related]
12. Acclimation of leaf water status and stem hydraulics to drought and tree neighbourhood: alternative strategies among the saplings of five temperate deciduous tree species. Lübbe T; Schuldt B; Leuschner C Tree Physiol; 2017 Apr; 37(4):456-468. PubMed ID: 27881798 [TBL] [Abstract][Full Text] [Related]
13. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Garcia-Forner N; Adams HD; Sevanto S; Collins AD; Dickman LT; Hudson PJ; Zeppel MJ; Jenkins MW; Powers H; Martínez-Vilalta J; Mcdowell NG Plant Cell Environ; 2016 Jan; 39(1):38-49. PubMed ID: 26081870 [TBL] [Abstract][Full Text] [Related]
15. Linking coordinated hydraulic traits to drought and recovery responses in a tropical montane cloud forest. Berry ZC; Espejel X; Williams-Linera G; Asbjornsen H Am J Bot; 2019 Oct; 106(10):1316-1326. PubMed ID: 31518000 [TBL] [Abstract][Full Text] [Related]
16. Root water uptake depth determines the hydraulic vulnerability of temperate European tree species during the extreme 2018 drought. Kahmen A; Basler D; Hoch G; Link RM; Schuldt B; Zahnd C; Arend M Plant Biol (Stuttg); 2022 Dec; 24(7):1224-1239. PubMed ID: 36219537 [TBL] [Abstract][Full Text] [Related]
17. Water relations in tree physiology: where to from here? Landsberg J; Waring R; Ryan M Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen deposition increases xylem hydraulic sensitivity but decreases stomatal sensitivity to water potential in two temperate deciduous tree species. Fan DY; Dang QL; Yang XF; Liu XM; Wang JY; Zhang SR Sci Total Environ; 2022 Nov; 848():157840. PubMed ID: 35934026 [TBL] [Abstract][Full Text] [Related]
19. Hydraulics of high-yield orchard trees: a case study of three Malus domestica cultivars. Beikircher B; De Cesare C; Mayr S Tree Physiol; 2013 Dec; 33(12):1296-307. PubMed ID: 24319028 [TBL] [Abstract][Full Text] [Related]
20. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]