BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38606759)

  • 1. How conspecific and allospecific eggs and larvae drive oviposition preference in Drosophila.
    Moreira-Soto RD; Khallaf MA; Hansson BS; Knaden M
    Chem Senses; 2024 Jan; 49():. PubMed ID: 38606759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The egg and larval pheromone dodecanoic acid mediates density-dependent oviposition of Phlebotomus papatasi.
    Kowacich D; Hatano E; Schal C; Ponnusamy L; Apperson CS; Shymanovich T; Wasserberg G
    Parasit Vectors; 2020 Jun; 13(1):280. PubMed ID: 32493498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-generation pheromonal communication drives Drosophila oviposition site choice.
    Zhang L; Sun H; Grosse-Wilde E; Zhang L; Hansson BS; Dweck HKM
    Curr Biol; 2023 May; 33(10):2095-2103.e3. PubMed ID: 37098339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oviposition preferences of two forensically important blow fly species, Chrysomya megacephala and C. rufifacies (Diptera: Calliphoridae), and implications for postmortem interval estimation.
    Yang ST; Shiao SF
    J Med Entomol; 2012 Mar; 49(2):424-35. PubMed ID: 22493863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult fruit fly attraction to larvae biases experience and mediates social learning.
    Durisko Z; Anderson B; Dukas R
    J Exp Biol; 2014 Apr; 217(Pt 7):1193-7. PubMed ID: 24311811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaking Youngsters and Shaken Adults: Female Beetles Eavesdrop on Larval Seed Vibrations to Make Egg-Laying Decisions.
    Guedes RN; Yack JE
    PLoS One; 2016; 11(2):e0150034. PubMed ID: 26913508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upregulation of Juvenile Hormone Titers in Female Drosophila melanogaster Through Mating Experiences and Host Food Occupied by Eggs and Larvae.
    Sugime Y; Watanabe D; Yasuno Y; Shinada T; Miura T; Tanaka NK
    Zoolog Sci; 2017 Feb; 34(1):52-57. PubMed ID: 28148219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attraction and oviposition preferences of Phlebotomus papatasi (Diptera: Psychodidae), vector of Old-World cutaneous leishmaniasis, to larval rearing media.
    Marayati BF; Schal C; Ponnusamy L; Apperson CS; Rowland TE; Wasserberg G
    Parasit Vectors; 2015 Dec; 8():663. PubMed ID: 26714743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oviposition by a lycaenid butterfly onto old host parts is adaptive to avoid interference by conspecific larvae.
    Mochioka Y; Kinoshita M; Tokuda M
    PLoS One; 2021; 16(5):e0252239. PubMed ID: 34038484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Egg laying decisions in Drosophila are consistent with foraging costs of larval progeny.
    Schwartz NU; Zhong L; Bellemer A; Tracey WD
    PLoS One; 2012; 7(5):e37910. PubMed ID: 22693584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Egg and larval load assessment and its influence on oviposition behaviour of the leaf beetle Galerucella nymphaeae.
    Mappes J; Mäkelä I
    Oecologia; 1993 Feb; 93(1):38-41. PubMed ID: 28313771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary shifts in taste coding in the fruit pest
    Dweck HK; Talross GJ; Wang W; Carlson JR
    Elife; 2021 Feb; 10():. PubMed ID: 33616529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oviposition preference, larval performance and adaptation of Trichoplusia ni on cabbage and cotton.
    Li YX; Liu TX
    Insect Sci; 2015 Apr; 22(2):273-82. PubMed ID: 24431263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oviposition Preference and Performance of a Specialist Herbivore Is Modulated by Natural Enemies, Larval Odors, and Immune Status.
    Ghosh E; Sasidharan A; Ode PJ; Venkatesan R
    J Chem Ecol; 2022 Aug; 48(7-8):670-682. PubMed ID: 35604580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Context-Dependent Plastic Response during Egg-Laying in a Widespread Newt Species.
    Tóth Z
    PLoS One; 2015; 10(8):e0136044. PubMed ID: 26291328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent oviposition deterrence by an oviposition mark in a fungus-farming lizard beetle.
    Miyazaki Y; Toki W
    Naturwissenschaften; 2020 Nov; 107(6):53. PubMed ID: 33244637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary compromises to metabolic toxins: Ammonia and urea tolerance in Drosophila suzukii and Drosophila melanogaster.
    Belloni V; Galeazzi A; Bernini G; Mandrioli M; Versace E; Haase A
    Physiol Behav; 2018 Jul; 191():146-154. PubMed ID: 29679661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oviposition site attraction of Aedes albopictus to sites with conspecific and heterospecific larvae during an ongoing invasion in Medellín, Colombia.
    Shragai T; Harrington L; Alfonso-Parra C; Avila F
    Parasit Vectors; 2019 Sep; 12(1):455. PubMed ID: 31533784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) Oviposition Behavior in Previous Oviposition Situation.
    Lima T; Von Zuben CJ
    Neotrop Entomol; 2016 Oct; 45(5):612-617. PubMed ID: 27295050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to Lead (Pb
    Peterson EK; Stark A; Varian-Ramos CW; Hollocher KT; Possidente B
    Bull Environ Contam Toxicol; 2020 May; 104(5):588-594. PubMed ID: 32193571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.