These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 38607044)
1. Extracellular Vesicles of Patients on Peritoneal Dialysis Inhibit the TGF-β- and PDGF-B-Mediated Fibrotic Processes. Szebeni B; Veres-Székely A; Pap D; Bokrossy P; Varga Z; Gaál A; Mihály J; Pállinger É; Takács IM; Pajtók C; Bernáth M; Reusz GS; Szabó AJ; Vannay Á Cells; 2024 Mar; 13(7):. PubMed ID: 38607044 [TBL] [Abstract][Full Text] [Related]
2. Extracellular vesicle-packaged ILK from mesothelial cells promotes fibroblast activation in peritoneal fibrosis. Huang Q; Sun Y; Peng L; Sun J; Sha Z; Lin H; Li Y; Li C; Li H; Shang H; Chen Y; Dou X; Hu Z; Ye Z; Peng H J Extracell Vesicles; 2023 Jul; 12(7):e12334. PubMed ID: 37357686 [TBL] [Abstract][Full Text] [Related]
3. TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Kariya T; Nishimura H; Mizuno M; Suzuki Y; Matsukawa Y; Sakata F; Maruyama S; Takei Y; Ito Y Am J Physiol Renal Physiol; 2018 Feb; 314(2):F167-F180. PubMed ID: 28978530 [TBL] [Abstract][Full Text] [Related]
4. Glycoprotein 96 in Peritoneal Dialysis Effluent-Derived Extracellular Vesicles: A Tool for Evaluating Peritoneal Transport Properties and Inflammatory Status. Fang J; Tong Y; Ji O; Wei S; Chen Z; Song A; Li P; Zhang Y; Zhang H; Ruan H; Ding F; Liu Y Front Immunol; 2022; 13():824278. PubMed ID: 35222405 [TBL] [Abstract][Full Text] [Related]
5. Proteomic Characterization of Peritoneal Extracellular Vesicles in a Mouse Model of Peritoneal Fibrosis. Huang Q; Sun Y; Sun J; Peng L; Shang H; Wei D; Li C; Hu Z; Peng H J Proteome Res; 2023 Mar; 22(3):908-918. PubMed ID: 36648763 [TBL] [Abstract][Full Text] [Related]
6. Effects of TGF-β1 Receptor Inhibitor GW788388 on the Epithelial to Mesenchymal Transition of Peritoneal Mesothelial Cells. Lho Y; Do JY; Heo JY; Kim AY; Kim SW; Kang SH Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33947038 [TBL] [Abstract][Full Text] [Related]
7. Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients. Siddique I; Curran SP; Ghayur A; Liu L; Shi W; Hoff CM; Gangji AS; Brimble KS; Margetts PJ Am J Pathol; 2014 Nov; 184(11):2976-84. PubMed ID: 25194662 [TBL] [Abstract][Full Text] [Related]
8. Autophagy promotes fibrosis and apoptosis in the peritoneum during long-term peritoneal dialysis. Wu J; Xing C; Zhang L; Mao H; Chen X; Liang M; Wang F; Ren H; Cui H; Jiang A; Wang Z; Zou M; Ji Y J Cell Mol Med; 2018 Feb; 22(2):1190-1201. PubMed ID: 29077259 [TBL] [Abstract][Full Text] [Related]
9. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. Chen YT; Chang YT; Pan SY; Chou YH; Chang FC; Yeh PY; Liu YH; Chiang WC; Chen YM; Wu KD; Tsai TJ; Duffield JS; Lin SL J Am Soc Nephrol; 2014 Dec; 25(12):2847-58. PubMed ID: 24854266 [TBL] [Abstract][Full Text] [Related]
10. Reprogramming of Mesothelial-Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-β1 Inhibition. Wilson RB; Archid R; Reymond MA Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32532126 [TBL] [Abstract][Full Text] [Related]
11. MiR-200a negatively regulates TGF-β Guo R; Hao G; Bao Y; Xiao J; Zhan X; Shi X; Luo L; Zhou J; Chen Q; Wei X Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1087-F1095. PubMed ID: 29357421 [TBL] [Abstract][Full Text] [Related]
12. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Fan YP; Hsia CC; Tseng KW; Liao CK; Fu TW; Ko TL; Chiu MM; Shih YH; Huang PY; Chiang YC; Yang CC; Fu YS Stem Cells Transl Med; 2016 Feb; 5(2):235-47. PubMed ID: 26718649 [TBL] [Abstract][Full Text] [Related]
14. Parthenolide, an NF-κB inhibitor, alleviates peritoneal fibrosis by suppressing the TGF-β/Smad pathway. Zhang Y; Huang Q; Chen Y; Peng X; Wang Y; Li S; Wu J; Luo C; Gong W; Yin B; Xiao J; Zhou W; Peng F; Long H Int Immunopharmacol; 2020 Jan; 78():106064. PubMed ID: 31838448 [TBL] [Abstract][Full Text] [Related]
15. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor. Li X; Liu H; Sun L; Zhou X; Yuan X; Chen Y; Liu F; Liu Y; Xiao L J Cell Mol Med; 2019 Apr; 23(4):2372-2383. PubMed ID: 30693641 [TBL] [Abstract][Full Text] [Related]
16. 22-Oxacalcitriol prevents progression of peritoneal fibrosis in a mouse model. Hirose M; Nishino T; Obata Y; Nakazawa M; Nakazawa Y; Furusu A; Abe K; Miyazaki M; Koji T; Kohno S Perit Dial Int; 2013; 33(2):132-42. PubMed ID: 23032084 [TBL] [Abstract][Full Text] [Related]
17. Peritoneal fibrosis and high transport are induced in mildly pre-injured peritoneum by 3,4-dideoxyglucosone-3-ene in mice. Yokoi H; Kasahara M; Mori K; Kuwabara T; Toda N; Yamada R; Namoto S; Yamamoto T; Seki N; Souma N; Yamaguchi T; Sugawara A; Mukoyama M; Nakao K Perit Dial Int; 2013; 33(2):143-54. PubMed ID: 23123666 [TBL] [Abstract][Full Text] [Related]
18. Increased expression of epimorphin in a peritoneal fibrosis mouse model. Yamada M; Hirai Y; Inoue D; Komatsu S; Uchida T; Kojima T; Tomiyasu T; Yoshikawa N; Oda T Perit Dial Int; 2022 Sep; 42(5):522-529. PubMed ID: 34641723 [TBL] [Abstract][Full Text] [Related]
19. Matrix metalloproteinase 9 is associated with peritoneal membrane solute transport and induces angiogenesis through β-catenin signaling. Padwal M; Siddique I; Wu L; Tang K; Boivin F; Liu L; Robertson J; Bridgewater D; West-Mays J; Gangji A; Brimble KS; Margetts PJ Nephrol Dial Transplant; 2017 Jan; 32(1):50-61. PubMed ID: 27190383 [TBL] [Abstract][Full Text] [Related]