These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38607148)

  • 1. Continuous-Wave Pumped Monolayer WS
    Cheng H; Qu J; Mao W; Chen S; Dong H
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity.
    Li Y; Zhang J; Huang D; Sun H; Fan F; Feng J; Wang Z; Ning CZ
    Nat Nanotechnol; 2017 Oct; 12(10):987-992. PubMed ID: 28737750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the Exciton-Polariton in a Continuous-Wave Optically Pumped CsPbBr
    Shang Q; Li M; Zhao L; Chen D; Zhang S; Chen S; Gao P; Shen C; Xing J; Xing G; Shen B; Liu X; Zhang Q
    Nano Lett; 2020 Sep; 20(9):6636-6643. PubMed ID: 32786951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films.
    Qin C; Sandanayaka ASD; Zhao C; Matsushima T; Zhang D; Fujihara T; Adachi C
    Nature; 2020 Sep; 585(7823):53-57. PubMed ID: 32879501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Temperature Continuous-Wave Pumped Lasing from Large-Area Monolayer Semiconductors Grown by Chemical Vapor Deposition.
    Zhao L; Shang Q; Gao Y; Shi J; Liu Z; Chen J; Mi Y; Yang P; Zhang Z; Du W; Hong M; Liang Y; Xie J; Hu X; Peng B; Leng J; Liu X; Zhao Y; Zhang Y; Zhang Q
    ACS Nano; 2018 Sep; 12(9):9390-9396. PubMed ID: 30133255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1.55 µm electrically pumped continuous wave lasing of quantum dash lasers grown on silicon.
    Xue Y; Luo W; Zhu S; Lin L; Shi B; Lau KM
    Opt Express; 2020 Jun; 28(12):18172-18179. PubMed ID: 32680018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching of Photonic Crystal Lasers by Graphene.
    Hwang MS; Kim HR; Kim KH; Jeong KY; Park JS; Choi JH; Kang JH; Lee JM; Park WI; Song JH; Seo MK; Park HG
    Nano Lett; 2017 Mar; 17(3):1892-1898. PubMed ID: 28165745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers.
    Li Z; Moon J; Gharajeh A; Haroldson R; Hawkins R; Hu W; Zakhidov A; Gu Q
    ACS Nano; 2018 Nov; 12(11):10968-10976. PubMed ID: 30383358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic band-edge micro lasers with quantum dot gain.
    Nomura M; Iwamoto S; Tandaechanurat A; Ota Y; Kumagai N; Arakawa Y
    Opt Express; 2009 Jan; 17(2):640-8. PubMed ID: 19158877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold.
    Hou Y; Renwick P; Liu B; Bai J; Wang T
    Sci Rep; 2014 May; 4():5014. PubMed ID: 24852881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield.
    Jiang L; Liu R; Su R; Yu Y; Xu H; Wei Y; Zhou ZK; Wang X
    Nanoscale; 2018 Jul; 10(28):13565-13571. PubMed ID: 29974911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room-Temperature Continuous-Wave Microcavity Lasers from Solution-Processed Smooth Quasi-2D Perovskite Films with Low Thresholds.
    Gao X; Lin J; Guo X; He G; Zou D; Ishii T; Zhang D; Zhao C; Zhan H; Huang JS; Liu X; Adachi C; Qin C; Wang L
    J Phys Chem Lett; 2023 Mar; 14(10):2493-2500. PubMed ID: 36867762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous-wave upconversion lasing with a sub-10 W cm
    Moon BS; Lee TK; Jeon WC; Kwak SK; Kim YJ; Kim DH
    Nat Commun; 2021 Jul; 12(1):4437. PubMed ID: 34290251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Lasers for Smart Photonic Labels.
    Capocefalo A; Quintiero E; Conti C; Ghofraniha N; Viola I
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51485-51494. PubMed ID: 34666483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valley-addressable monolayer lasing through spin-controlled Berry phase photonic cavities.
    Duan X; Wang B; Rong K; Liu CL; Gorovoy V; Mukherjee S; Kleiner V; Koren E; Hasman E
    Science; 2023 Sep; 381(6665):1429-1432. PubMed ID: 37769087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous-Wave Pumped Perovskite Lasers with Device Area Below 1 µm
    Song J; Shang Q; Deng X; Liang Y; Li C; Liu X; Xiong Q; Zhang Q
    Adv Mater; 2023 Jul; 35(30):e2302170. PubMed ID: 37094375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers.
    Alanis JA; Saxena D; Mokkapati S; Jiang N; Peng K; Tang X; Fu L; Tan HH; Jagadish C; Parkinson P
    Nano Lett; 2017 Aug; 17(8):4860-4865. PubMed ID: 28732157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically Pumped Monolayer MoSe
    Fu X; Fu X; Chen Y; Qin L; Peng H; Shi R; Li F; Zhou Q; Wang Y; Zhou Y; Ning Y
    J Phys Chem Lett; 2020 Jan; 11(2):541-547. PubMed ID: 31887063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-selection mechanism of Fabry-Pérot micro/nanoscale wire cavity for single-mode lasing.
    Yang Y; Zong H; Ma C; Wei T; Li J; Zhang J; Li M; Pan C; Hu X
    Opt Express; 2017 Sep; 25(18):21025-21036. PubMed ID: 29041512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers.
    Shang J; Cong C; Wang Z; Peimyoo N; Wu L; Zou C; Chen Y; Chin XY; Wang J; Soci C; Huang W; Yu T
    Nat Commun; 2017 Sep; 8(1):543. PubMed ID: 28912420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.