These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38607165)

  • 41. High-Performance Flexible Freestanding Anode with Hierarchical 3D Carbon-Networks/Fe
    Chen W; Zhang X; Mi L; Liu C; Zhang J; Cui S; Feng X; Cao Y; Shen C
    Adv Mater; 2019 Feb; 31(8):e1806664. PubMed ID: 30614589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MXene nanofibers confining MnO
    Guo Y; Zhang D; Bai Z; Yang Y; Wang Y; Cheng J; Chu PK; Luo Y
    Dalton Trans; 2022 Jan; 51(4):1423-1433. PubMed ID: 34951612
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultralong Sb
    Luo W; Calas A; Tang C; Li F; Zhou L; Mai L
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35219-35226. PubMed ID: 27959503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Co-construction of sulfur vacancies and carbon confinement in V
    Xu L; Chen X; Guo W; Zeng L; Yang T; Xiong P; Chen Q; Zhang J; Wei M; Qian Q
    Nanoscale; 2021 Mar; 13(9):5033-5044. PubMed ID: 33646222
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries.
    Xiong X; Luo W; Hu X; Chen C; Qie L; Hou D; Huang Y
    Sci Rep; 2015 Mar; 5():9254. PubMed ID: 25806866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Free-standing Reduced Graphene Oxide/carbon Nanotube Paper for Flexible Sodium-ion Battery Applications.
    Hao Y; Wang C
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102412
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved Lithium-Ion and Sodium-Ion Storage Properties from Few-Layered WS
    Pang Q; Gao Y; Zhao Y; Ju Y; Qiu H; Wei Y; Liu B; Zou B; Du F; Chen G
    Chemistry; 2017 May; 23(29):7074-7080. PubMed ID: 28374501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The dealloying-lithiation/delithiation-realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries.
    Chen R; Xue X; Lu J; Chen T; Hu Y; Ma L; Zhu G; Jin Z
    Nanoscale; 2019 May; 11(18):8803-8811. PubMed ID: 30998229
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries.
    Xu K; Pan Q; Zheng F; Zhong G; Wang C; Wu S; Yang C
    Front Chem; 2019; 7():733. PubMed ID: 31737606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes.
    Cui C; Xu J; Zhang Y; Wei Z; Mao M; Lian X; Wang S; Yang C; Fan X; Ma J; Wang C
    Nano Lett; 2019 Jan; 19(1):538-544. PubMed ID: 30550291
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MXene-encapsulated hollow Fe
    Guo Y; Zhang D; Yang Y; Wang Y; Bai Z; Chu PK; Luo Y
    Nanoscale; 2021 Mar; 13(8):4624-4633. PubMed ID: 33605964
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designed Formation of Hybrid Nanobox Composed of Carbon Sheathed CoSe
    Li B; Liu Y; Jin X; Jiao S; Wang G; Peng B; Zeng S; Shi L; Li J; Zhang G
    Small; 2019 Oct; 15(42):e1902881. PubMed ID: 31433124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors.
    Lim E; Jo C; Kim H; Kim MH; Mun Y; Chun J; Ye Y; Hwang J; Ha KS; Roh KC; Kang K; Yoon S; Lee J
    ACS Nano; 2015 Jul; 9(7):7497-505. PubMed ID: 26095456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flexible Freestanding Carbon Nanofiber-Embedded TiO
    Zhang X; Chen Z; Shui L; Shang C; Liao H; Li M; Wang X; Zhou G
    Scanning; 2018; 2018():4725328. PubMed ID: 30524641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries.
    Chen R; Zhao T; Wu W; Wu F; Li L; Qian J; Xu R; Wu H; Albishri HM; Al-Bogami AS; El-Hady DA; Lu J; Amine K
    Nano Lett; 2014 Oct; 14(10):5899-904. PubMed ID: 25163033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nb
    Liu S; Zhou J; Cai Z; Fang G; Pan A; Liang S
    Nanotechnology; 2016 Nov; 27(46):46LT01. PubMed ID: 27734810
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergetic Strategy for the Fabrication of Self-Standing Distorted Carbon Nanofibers with Heteroatom Doping for Sodium-Ion Batteries.
    Kale SB; Chothe UP; Kale BB; Kulkarni MV; Pavitran S; Gosavi SW
    ACS Omega; 2021 Jun; 6(24):15686-15697. PubMed ID: 34179612
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Construction of WS
    Yuan C; Liu B; Zhang H; Ma H; Lu Z; Xie J; Hu J; Cao Y
    Nanoscale; 2024 Apr; 16(15):7660-7669. PubMed ID: 38529700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bowl-shaped hollow carbon wrapped in graphene grown in situ by chemical vapor deposition as an advanced anode material for sodium-ion batteries.
    Yang G; Zhou Z; Liu X; Zhang Y; Wang S; Yan W; Ding S
    J Colloid Interface Sci; 2023 May; 637():283-290. PubMed ID: 36706724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode To Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries.
    He XX; Zhao JH; Lai WH; Li R; Yang Z; Xu CM; Dai Y; Gao Y; Liu XH; Li L; Xu G; Qiao Y; Chou SL; Wu M
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44358-44368. PubMed ID: 34506123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.