BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38607168)

  • 1. Incidence of the Brownian Relaxation Process on the Magnetic Properties of Ferrofluids.
    Vajtai L; Nemes NM; Morales MDP; Molnár K; Pinke BG; Simon F
    Nanomaterials (Basel); 2024 Apr; 14(7):. PubMed ID: 38607168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.
    Ota S; Kitaguchi R; Takeda R; Yamada T; Takemura Y
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Study of Brownian and Néel Relaxation Phenomena in Ferrofluids by Mössbauer Spectroscopy.
    Landers J; Salamon S; Remmer H; Ludwig F; Wende H
    Nano Lett; 2016 Feb; 16(2):1150-5. PubMed ID: 26788750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extrinsic hysteresis behavior of dilute binary ferrofluids.
    Lin L; Li J; Lin Y; Liu X; Chen L; Li J; Li D
    Eur Phys J E Soft Matter; 2014 Oct; 37(10):102. PubMed ID: 25365919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Field Orientation and Dynamics of Ferrofluids Studied by Mössbauer Spectroscopy.
    Landers J; Salamon S; Remmer H; Ludwig F; Wende H
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3160-3168. PubMed ID: 30582794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ measurement of magnetization relaxation of internalized nanoparticles in live cells.
    Soukup D; Moise S; Céspedes E; Dobson J; Telling ND
    ACS Nano; 2015 Jan; 9(1):231-40. PubMed ID: 25562356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field.
    Morales I; Costo R; Mille N; Carrey J; Hernando A; de la Presa P
    Nanoscale Adv; 2021 Oct; 3(20):5801-5812. PubMed ID: 36132668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetization relaxation dynamics in polydisperse ferrofluids.
    Ivanov AO; Camp PJ
    Phys Rev E; 2023 Mar; 107(3-1):034604. PubMed ID: 37072981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications.
    Nguyen LH; Phong PT; Nam PH; Manh DH; Thanh NTK; Tung LD; Phuc NX
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of Individual Superspin Relaxation in Diluted Fe
    Botez CE; Mussslewhite Z
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of interacting magnetic nanoparticles: effective behavior from competition between Brownian and Néel relaxation.
    Ilg P; Kröger M
    Phys Chem Chem Phys; 2020 Oct; 22(39):22244-22259. PubMed ID: 33001111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.
    Feng X; Jia G; Peng J; Huang L; Liang X; Zhang H; Liu Y; Zhang B; Zhang Y; Sun M; Li P; Miao Q; Wang Y; Xi L; Hu K; Li T; Hui H; Tian J
    Med Phys; 2023 Jul; 50(7):4651-4663. PubMed ID: 37293867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic susceptibility of a concentrated ferrofluid: The role of interparticle interactions.
    Lebedev AV; Stepanov VI; Kuznetsov AA; Ivanov AO; Pshenichnikov AF
    Phys Rev E; 2019 Sep; 100(3-1):032605. PubMed ID: 31639971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-jump model for the combined Brownian and Néel relaxation dynamics of ferrofluids in the presence of external fields and flow.
    Ilg P
    Phys Rev E; 2019 Aug; 100(2-1):022608. PubMed ID: 31574757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the Brownian relaxation of nanoparticle ferrofluids: comparison with experiment.
    Martens MA; Deissler RJ; Wu Y; Bauer L; Yao Z; Brown R; Griswold M
    Med Phys; 2013 Feb; 40(2):022303. PubMed ID: 23387765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the transverse magnetization of rotating ferrofluids.
    Embs JP; May S; Wagner C; Kityk AV; Leschhorn A; Lücke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036302. PubMed ID: 16605646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle composition of a ferrofluid and its effects on the magnetic properties.
    Büscher K; Helm CA; Gross C; Glöckl G; Romanus E; Weitschies W
    Langmuir; 2004 Mar; 20(6):2435-44. PubMed ID: 15835707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural properties of charge-stabilized ferrofluids under a magnetic field: a Brownian dynamics study.
    Mériguet G; Jardat M; Turq P
    J Chem Phys; 2004 Sep; 121(12):6078-85. PubMed ID: 15367036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.