BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38607383)

  • 1. An amino-rich polymer-coated magnetic nanomaterial for ultra-rapid separation of phosphorylated peptides in the serum of Parkinson's disease patients.
    Zhang X; Wang B; Luo Y; Ding CF; Yan Y
    Anal Bioanal Chem; 2024 Jun; 416(14):3361-3371. PubMed ID: 38607383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides.
    Cao L; Zhao Y; Chu Z; Zhang X; Zhang W
    Talanta; 2020 Jan; 206():120165. PubMed ID: 31514902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Gd
    Jiang D; Li X; Ma J; Jia Q
    Talanta; 2018 Apr; 180():368-375. PubMed ID: 29332825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis.
    Shi C; Lin Q; Deng C
    Talanta; 2015 Apr; 135():81-6. PubMed ID: 25640129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Gd
    Jiang D; Lv S; Han X; Duan L; Liu J
    Mikrochim Acta; 2021 Sep; 188(10):327. PubMed ID: 34494164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic Nb⁵⁺-immobilized magnetic core-shell microsphere--A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides.
    Sun X; Liu X; Feng J; Li Y; Deng C; Duan G
    Anal Chim Acta; 2015 Jun; 880():67-76. PubMed ID: 26092339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile liquid-phase deposition synthesis of titania-coated magnetic sporopollenin for the selective capture of phosphopeptides.
    Hussain D; Najam-Ul-Haq M; Majeed S; Musharraf SG; Lu Q; He X; Feng YQ
    Anal Bioanal Chem; 2019 Jun; 411(15):3373-3382. PubMed ID: 31016328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preparation of polyoxometalate-chitosan magnetic composite for the enrichment of phosphopeptides].
    Jiang D; Ma J; Jia Q
    Se Pu; 2019 Mar; 37(3):247-251. PubMed ID: 30900851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis.
    Li Y; Lin H; Deng C; Yang P; Zhang X
    Proteomics; 2008 Jan; 8(2):238-49. PubMed ID: 18081192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selective enrichment of phosphopeptides by on-chip indium oxide functionalized magnetic nanoparticles coupled with MALDI-TOF MS.
    Jiang D; Song N; Li X; Ma J; Jia Q
    Proteomics; 2017 Sep; 17(17-18):. PubMed ID: 28722797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel carbon-based material with titanium and zirconium ions etched on hollow mesoporous carbon tubes for specific capture of phosphopeptides and exosomes.
    Hua S; Wang B; Ding CF; Yan Y
    Talanta; 2024 Jan; 266(Pt 2):125139. PubMed ID: 37659233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional ZrO(2) nanoparticles and ZrO(2)-SiO (2) nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins.
    Kailasa SK; Wu HF
    Anal Bioanal Chem; 2010 Feb; 396(3):1115-25. PubMed ID: 20091153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Hf(4+)-immobilized polydopamine-coated magnetic graphene for highly selective enrichment of phosphopeptides.
    Lin H; Deng C
    Talanta; 2016; 149():91-97. PubMed ID: 26717818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Ti(4+)-immobilized phosphate polymer-patterned silicon substrate for on-plate selective enrichment and self-desalting of phosphopeptides.
    Xu L; Zhu W; Sun R; Ding Y
    Analyst; 2015 May; 140(9):3216-24. PubMed ID: 25788104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin-yttrium phosphate-shelled polyacrylate-ferriferrous oxide magnetic microspheres for rapid and selective enrichment of phosphopeptides.
    Sun Y; Wang HF
    J Chromatogr A; 2013 Nov; 1316():62-8. PubMed ID: 24128437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of immobilized Sn
    Lin H; Deng C
    Proteomics; 2016 Nov; 16(21):2733-2741. PubMed ID: 27650410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis.
    Lin HY; Chen WY; Chen YC
    Anal Bioanal Chem; 2009 Aug; 394(8):2129-36. PubMed ID: 19554316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Step Enrichment of N-Glycopeptides and Phosphopeptides with Novel Multifunctional Ti
    Zou X; Jie J; Yang B
    Anal Chem; 2017 Jul; 89(14):7520-7526. PubMed ID: 28609623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes.
    Yan Y; Zheng Z; Deng C; Zhang X; Yang P
    Talanta; 2014 Jan; 118():14-20. PubMed ID: 24274265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient and selective enrichment of phosphopeptides using porous anodic alumina membrane for MALDI-TOF MS analysis.
    Wang Y; Chen W; Wu J; Guo Y; Xia X
    J Am Soc Mass Spectrom; 2007 Aug; 18(8):1387-95. PubMed ID: 17533135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.