These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3860817)

  • 1. Synchrotron radiation x-ray scattering in the early stages of in vitro collagen fibril formation.
    Suarez G; Oronsky AL; Bordas J; Koch MH
    Proc Natl Acad Sci U S A; 1985 Jul; 82(14):4693-6. PubMed ID: 3860817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray kinetic studies of microtubule assembly using synchrotron radiation.
    Mandelkow EM; Harmsen A; Mandelkow E; Bordas J
    Nature; 1980 Oct; 287(5783):595-9. PubMed ID: 7432480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monomer and oligomer of type I collagen: molecular properties and fibril assembly.
    Na GC
    Biochemistry; 1989 Sep; 28(18):7161-7. PubMed ID: 2819058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen fibril formation in vitro. A quasielastic light-scattering study of early stages.
    Gelman RA; Piez KA
    J Biol Chem; 1980 Sep; 255(17):8098-102. PubMed ID: 7410351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen fibrillogenesis in vitro: an investigation of the thermal memory effect and of the early events occurring during fibril assembly using dynamic light scattering.
    Payne KJ; King TA; Holmes DF
    Biopolymers; 1986 Jul; 25(7):1185-207. PubMed ID: 3741991
    [No Abstract]   [Full Text] [Related]  

  • 6. FTIRS in H2O demonstrates that collagen monomers undergo a conformational transition prior to thermal self-assembly in vitro.
    George A; Veis A
    Biochemistry; 1991 Mar; 30(9):2372-7. PubMed ID: 2001367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of collagen fibrillogenesis: I. Use of turbidity--time data.
    Silver FH; Birk DE
    Coll Relat Res; 1983 Sep; 3(5):393-405. PubMed ID: 6641124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen fibrillogenesis: intermediate aggregates and suprafibrillar order.
    Trelstad RL; Hayashi K; Gross J
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):4027-31. PubMed ID: 1069288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro collagen fibril assembly in glycerol solution: evidence for a helical cooperative mechanism involving microfibrils.
    Na GC; Butz LJ; Bailey DG; Carroll RJ
    Biochemistry; 1986 Mar; 25(5):958-66. PubMed ID: 3964669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray kinematography of phase transformations of three-component lipid mixtures: a time-resolved synchrotron X-ray scattering study using the pressure-jump relaxation technique.
    Jeworrek C; PĆ¼hse M; Winter R
    Langmuir; 2008 Oct; 24(20):11851-9. PubMed ID: 18767826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type I collagen fibrillogenesis in vitro. Additional evidence for the assembly mechanism.
    Silver FH
    J Biol Chem; 1981 May; 256(10):4973-7. PubMed ID: 7228864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of type I collagen fibrils de novo. Between 37 and 41 degrees C the process is limited by micro-unfolding of monomers.
    Kadler KE; Hojima Y; Prockop DJ
    J Biol Chem; 1988 Jul; 263(21):10517-23. PubMed ID: 3392022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray diffraction evidence of collagen molecular packing and cross-linking in fibrils of rat tendon observed by synchrotron radiation.
    Svendsen KH; Koch MH
    EMBO J; 1982; 1(6):669-74. PubMed ID: 7188356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural intermediates in the assembly of taxoid-induced microtubules and GDP-tubulin double rings: time-resolved X-ray scattering.
    Diaz JF; Andreu JM; Diakun G; Towns-Andrews E; Bordas J
    Biophys J; 1996 May; 70(5):2408-20. PubMed ID: 9172767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy.
    Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA
    J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of in vitro collagen fibril assembly. Kinetic and morphological studies.
    Na GC; Butz LJ; Carroll RJ
    J Biol Chem; 1986 Sep; 261(26):12290-9. PubMed ID: 3745187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen fibrillogenesis in the presence of lanthanides.
    Drouven BJ; Evans CH
    J Biol Chem; 1986 Sep; 261(25):11792-7. PubMed ID: 3745166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type I collagen in solution. Structure and properties of fibril fragments.
    Silver FH; Trelstad RL
    J Biol Chem; 1980 Oct; 255(19):9427-33. PubMed ID: 7410433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural property and in vitro self-assembly of shark type I collagen.
    Nomura Y; Yamano M; Hayakawa C; Ishii Y; Shirai K
    Biosci Biotechnol Biochem; 1997 Nov; 61(11):1919-23. PubMed ID: 9404072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstituted collagen fibrils. Fibrillar and molecular stability of the collagen upon maturation in vitro.
    Danielsen CC
    Biochem J; 1984 Sep; 222(3):663-8. PubMed ID: 6435603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.