These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38608269)

  • 1. Fabrication and Characterization of PDMS Waveguides for Flexible Optrodes.
    Rudmann L; Scholz D; Alt MT; Dieter A; Fiedler E; Moser T; Stieglitz T
    Adv Healthc Mater; 2024 Jun; 13(16):e2304513. PubMed ID: 38608269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct fabrication of PDMS waveguides via low-cost DUV irradiation for optical sensing.
    Valouch S; Sieber H; Kettlitz S; Eschenbaum C; Hollenbach U; Lemmer U
    Opt Express; 2012 Dec; 20(27):28855-61. PubMed ID: 23263126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Sub-Micron Polymer Waveguides through Two-Photon Polymerization in Polydimethylsiloxane.
    Panusa G; Pu Y; Wang J; Moser C; Psaltis D
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33114700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between the Young's modulus and dry etching rate of polydimethylsiloxane (PDMS).
    Fitzgerald ML; Tsai S; Bellan LM; Sappington R; Xu Y; Li D
    Biomed Microdevices; 2019 Mar; 21(1):26. PubMed ID: 30826983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals.
    Cao Y; Pan S; Yan M; Sun C; Huang J; Zhong C; Wang L; Yi L
    BMC Biol; 2021 Nov; 19(1):252. PubMed ID: 34819062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide.
    Kee JS; Poenar DP; Neuzil P; Yobas L
    Opt Express; 2009 Jul; 17(14):11739-46. PubMed ID: 19582088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydimethylsiloxane as a more biocompatible alternative to glass in optogenetics.
    Andersen MA; Schouenborg J
    Sci Rep; 2023 Sep; 13(1):16090. PubMed ID: 37752160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polydimethylsiloxane (PDMS)-Based Flexible Optical Electrodes with Conductive Composite Hydrogels Integrated Probe for Optogenetics.
    Zhao Y; Wang K; Li S; Zhang P; Shen Y; Fu Y; Zhang Y; Zhou J; Wang C
    J Biomed Nanotechnol; 2018 Jun; 14(6):1099-1106. PubMed ID: 29843874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of cochlear function in the neonate Mongolian gerbil (Meriones unguiculatus).
    Finck A; Schneck CD; Hartman AF
    J Comp Physiol Psychol; 1972 Mar; 78(3):375-80. PubMed ID: 5016281
    [No Abstract]   [Full Text] [Related]  

  • 10. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators.
    Ersen A; Sahin M
    J Biomed Opt; 2017 May; 22(5):55005. PubMed ID: 28500857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suitability of SU-8, EpoClad and EpoCore for flexible waveguides on implantable neural probes.
    Fiedler E; Haas N; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():438-41. PubMed ID: 25569990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication of SU-8 polymer arrayed waveguide gratings based on flexible PDMS substrates.
    Li H; Wang Y; Sun Y; Zhang S; An Z; Zhang S; Zhang C; Zhang Z; Mao Q; Prades García JD
    Appl Opt; 2022 Mar; 61(9):2213-2218. PubMed ID: 35333236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parylene photonics: a flexible, broadband optical waveguide platform with integrated micromirrors for biointerfaces.
    Reddy JW; Lassiter M; Chamanzar M
    Microsyst Nanoeng; 2020; 6():85. PubMed ID: 34567695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2008 Jan; 8(1):143-51. PubMed ID: 18094772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bend losses in flexible polyurethane antiresonant terahertz waveguides.
    Stefani A; Henry Skelton J; Tuniz A
    Opt Express; 2021 Aug; 29(18):28692-28703. PubMed ID: 34614994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.
    Shim E; Chen Y; Masmanidis S; Li M
    Sci Rep; 2016 Mar; 6():22693. PubMed ID: 26941111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel elastomeric spiropyran-doped poly(dimethylsiloxane) optical waveguide for UV sensing.
    Zimmermann CA; Amouzou KN; Sengupta D; Kumar A; Demarquette NR; Ung B
    Front Optoelectron; 2024 Jul; 17(1):21. PubMed ID: 39008156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Fabrication and Characterization of Polymer-Based Waveguide Probes for Use in Future Optical Cochlear Implants.
    Helke C; Reinhardt M; Arnold M; Schwenzer F; Haase M; Wachs M; Goßler C; Götz J; Keppeler D; Wolf B; Schaeper J; Salditt T; Moser T; Schwarz UT; Reuter D
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics.
    Jorfi M; Voirin G; Foster EJ; Weder C
    Opt Lett; 2014 May; 39(10):2872-5. PubMed ID: 24978225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.