BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38608317)

  • 21. Eliminating Ferroelectric Hysteresis in All-Two-Dimensional Gate-Stack Negative-Capacitance Transistors.
    Quan H; Meng D; Ma X; Qiu C
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):45076-45082. PubMed ID: 37721972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS
    McGuire FA; Lin YC; Price K; Rayner GB; Khandelwal S; Salahuddin S; Franklin AD
    Nano Lett; 2017 Aug; 17(8):4801-4806. PubMed ID: 28691824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllable Hysteresis and Threshold Voltage of Single-Walled Carbon Nano-tube Transistors with Ferroelectric Polymer Top-Gate Insulators.
    Sun YL; Xie D; Xu JL; Zhang C; Dai RX; Li X; Meng XJ; Zhu HW
    Sci Rep; 2016 Mar; 6():23090. PubMed ID: 26980284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-volatile ferroelectric memory with position-addressable polymer semiconducting nanowire.
    Hwang SK; Min SY; Bae I; Cho SM; Kim KL; Lee TW; Park C
    Small; 2014 May; 10(10):1976-84. PubMed ID: 24644019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors.
    Schiessl SP; Fröhlich N; Held M; Gannott F; Schweiger M; Forster M; Scherf U; Zaumseil J
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):682-9. PubMed ID: 25493421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methylation-Induced Reversible Metallic-Semiconducting Transition of Single-Walled Carbon Nanotube Arrays for High-Performance Field-Effect Transistors.
    Wang Y; Liu D; Zhang H; Wang J; Du R; Li TT; Qian J; Hu Y; Huang S
    Nano Lett; 2020 Jan; 20(1):496-501. PubMed ID: 31821006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A general approach for high yield fabrication of CMOS-compatible all-semiconducting carbon nanotube field effect transistors.
    Islam MR; Kormondy KJ; Silbar E; Khondaker SI
    Nanotechnology; 2012 Mar; 23(12):125201. PubMed ID: 22398179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-Programmable-Voltage Nonvolatile Memory Devices Based on Omega-shaped Gate Organic Ferroelectric P(VDF-TrFE) Field Effect Transistors Using p-type Silicon Nanowire Channels.
    Van NH; Lee JH; Whang D; Kang DJ
    Nanomicro Lett; 2015; 7(1):35-41. PubMed ID: 30464954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charge Transport in Mixed Semiconducting Carbon Nanotube Networks with Tailored Mixing Ratios.
    Brohmann M; Berger FJ; Matthiesen M; Schießl SP; Schneider S; Zaumseil J
    ACS Nano; 2019 Jun; 13(6):7323-7332. PubMed ID: 31184852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combination of Polymer Gate Dielectric and Two-Dimensional Semiconductor for Emerging Field-Effect Transistors.
    Choi J; Yoo H
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes.
    Rother M; Schießl SP; Zakharko Y; Gannott F; Zaumseil J
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5571-9. PubMed ID: 26867006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage.
    Zhang Z; Wang S; Ding L; Liang X; Pei T; Shen J; Xu H; Chen Q; Cui R; Li Y; Peng LM
    Nano Lett; 2008 Nov; 8(11):3696-701. PubMed ID: 18947214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of negative capacitance to provide voltage amplification for low power nanoscale devices.
    Salahuddin S; Datta S
    Nano Lett; 2008 Feb; 8(2):405-10. PubMed ID: 18052402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combustion synthesis of electrospun LaInO nanofiber for high-performance field-effect transistors.
    Chen Q; Li J; Yang Y; Zhu W; Zhang J
    Nanotechnology; 2019 Oct; 30(42):425205. PubMed ID: 31386631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ambient-processable high capacitance hafnia-organic self-assembled nanodielectrics.
    Everaerts K; Emery JD; Jariwala D; Karmel HJ; Sangwan VK; Prabhumirashi PL; Geier ML; McMorrow JJ; Bedzyk MJ; Facchetti A; Hersam MC; Marks TJ
    J Am Chem Soc; 2013 Jun; 135(24):8926-39. PubMed ID: 23688160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High mobility flexible graphene field-effect transistors with self-healing gate dielectrics.
    Lu CC; Lin YC; Yeh CH; Huang JC; Chiu PW
    ACS Nano; 2012 May; 6(5):4469-74. PubMed ID: 22501029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric.
    Opoku C; Hoettges KF; Hughes MP; Stolojan V; Silva SR; Shkunov M
    Nanotechnology; 2013 Oct; 24(40):405203. PubMed ID: 24029562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Negative Capacitance Field Effect Transistors based on Van der Waals 2D Materials.
    Chen RS; Lu Y
    Small; 2023 Oct; ():e2304445. PubMed ID: 37899295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotube thin film transistors based on aerosol methods.
    Zavodchikova MY; Kulmala T; Nasibulin AG; Ermolov V; Franssila S; Grigoras K; Kauppinen EI
    Nanotechnology; 2009 Feb; 20(8):085201. PubMed ID: 19417441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.