These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 38608332)
1. L-Ergothioneine slows the progression of age-related hearing loss in CBA/CaJ mice. Bauer MA; Bazard P; Acosta AA; Bangalore N; Elessaway L; Thivierge M; Chellani M; Zhu X; Ding B; Walton JP; Frisina RD Hear Res; 2024 May; 446():109004. PubMed ID: 38608332 [TBL] [Abstract][Full Text] [Related]
2. Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Kane KL; Longo-Guess CM; Gagnon LH; Ding D; Salvi RJ; Johnson KR Hear Res; 2012 Jan; 283(1-2):80-8. PubMed ID: 22138310 [TBL] [Abstract][Full Text] [Related]
3. Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice. Guimaraes P; Zhu X; Cannon T; Kim S; Frisina RD Hear Res; 2004 Jun; 192(1-2):83-9. PubMed ID: 15157966 [TBL] [Abstract][Full Text] [Related]
5. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice. Varghese GI; Zhu X; Frisina RD Hear Res; 2005 Nov; 209(1-2):60-7. PubMed ID: 16061336 [TBL] [Abstract][Full Text] [Related]
6. Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae. Ohlemiller KK; Dahl AR; Gagnon PM J Assoc Res Otolaryngol; 2010 Dec; 11(4):605-23. PubMed ID: 20706857 [TBL] [Abstract][Full Text] [Related]
7. Contralateral suppression of distortion-product otoacoustic emissions declines with age: a comparison of findings in CBA mice with human listeners. Jacobson M; Kim S; Romney J; Zhu X; Frisina RD Laryngoscope; 2003 Oct; 113(10):1707-13. PubMed ID: 14520094 [TBL] [Abstract][Full Text] [Related]
8. Interactions of hearing loss and diabetes mellitus in the middle age CBA/CaJ mouse model of presbycusis. Vasilyeva ON; Frisina ST; Zhu X; Walton JP; Frisina RD Hear Res; 2009 Mar; 249(1-2):44-53. PubMed ID: 19271313 [TBL] [Abstract][Full Text] [Related]
9. Surface electrical stimulation of the auditory cortex preserves efferent medial olivocochlear neurons and reduces cochlear traits of age-related hearing loss. Fuentes-Santamaría V; Benítez-Maicán Z; Alvarado JC; Fernández Del Campo IS; Gabaldón-Ull MC; Merchán MA; Juiz JM Hear Res; 2024 Jun; 447():109008. PubMed ID: 38636186 [TBL] [Abstract][Full Text] [Related]
10. Attenuation of progressive hearing loss in a model of age-related hearing loss by a heat shock protein inducer, geranylgeranylacetone. Mikuriya T; Sugahara K; Sugimoto K; Fujimoto M; Takemoto T; Hashimoto M; Hirose Y; Shimogori H; Hayashida N; Inouye S; Nakai A; Yamashita H Brain Res; 2008 May; 1212():9-17. PubMed ID: 18445491 [TBL] [Abstract][Full Text] [Related]
11. Sex differences in body composition, voluntary wheel running activity, balance performance, and auditory function in CBA/CaJ mice across the lifespan. Kim MJ; Carmichael PB; Bose U; Honkura Y; Suzuki J; Ding D; Erfe SL; Simms SS; Avaiya KA; Milani MN; Rymer EJ; Fragnito DT; Strom N; Salvi R; Someya S Hear Res; 2023 Feb; 428():108684. PubMed ID: 36599258 [TBL] [Abstract][Full Text] [Related]
12. Role of antioxidants in prevention of age-related hearing loss: a review of literature. Tavanai E; Mohammadkhani G Eur Arch Otorhinolaryngol; 2017 Apr; 274(4):1821-1834. PubMed ID: 27858145 [TBL] [Abstract][Full Text] [Related]
13. Effects of a dexamethasone-releasing implant on cochleae: A functional, morphological and pharmacokinetic study. Liu Y; Jolly C; Braun S; Janssen T; Scherer E; Steinhoff J; Ebenhoch H; Lohner A; Stark T; Kiefer J Hear Res; 2015 Sep; 327():89-101. PubMed ID: 25987502 [TBL] [Abstract][Full Text] [Related]
14. Comparison of distortion product otoacoustic emissions in 28 inbred strains of mice. Martin GK; Vazquez AE; Jimenez AM; Stagner BB; Howard MA; Lonsbury-Martin BL Hear Res; 2007 Dec; 234(1-2):59-72. PubMed ID: 17997239 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss. Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291 [TBL] [Abstract][Full Text] [Related]
16. Apical-to-basal gradients in age-related cochlear degeneration and their relationship to "primary" loss of cochlear neurons. Ohlemiller KK; Gagnon PM J Comp Neurol; 2004 Nov; 479(1):103-16. PubMed ID: 15389608 [TBL] [Abstract][Full Text] [Related]
17. Distortion product otoacoustic emissions in the C57BL/6J mouse model of age-related hearing loss. Parham K Hear Res; 1997 Oct; 112(1-2):216-34. PubMed ID: 9367243 [TBL] [Abstract][Full Text] [Related]
18. Preventing presbycusis in mice with enhanced medial olivocochlear feedback. Boero LE; Castagna VC; Terreros G; Moglie MJ; Silva S; Maass JC; Fuchs PA; Delano PH; Elgoyhen AB; Gómez-Casati ME Proc Natl Acad Sci U S A; 2020 May; 117(21):11811-11819. PubMed ID: 32393641 [TBL] [Abstract][Full Text] [Related]
19. α-Synuclein deficiency and efferent nerve degeneration in the mouse cochlea: a possible cause of early-onset presbycusis. Park SN; Back SA; Choung YH; Kim HL; Akil O; Lustig LR; Park KH; Yeo SW Neurosci Res; 2011 Nov; 71(3):303-10. PubMed ID: 21840348 [TBL] [Abstract][Full Text] [Related]
20. Metabolic presbycusis: differential changes in auditory brainstem and otoacoustic emission responses with chronic furosemide application in the gerbil. Mills DM; Schmiedt RA J Assoc Res Otolaryngol; 2004 Mar; 5(1):1-10. PubMed ID: 14605922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]