These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38608690)

  • 1. A highly optimized human in vitro translation system.
    Bothe A; Ban N
    Cell Rep Methods; 2024 Apr; 4(4):100755. PubMed ID: 38608690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system.
    Wakiyama M; Takimoto K; Ohara O; Yokoyama S
    Genes Dev; 2007 Aug; 21(15):1857-62. PubMed ID: 17671087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient in vitro translation system from mammalian cells lacking the translational inhibition caused by eIF2 phosphorylation.
    Zeenko VV; Wang C; Majumder M; Komar AA; Snider MD; Merrick WC; Kaufman RJ; Hatzoglou M
    RNA; 2008 Mar; 14(3):593-602. PubMed ID: 18230759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete Chemical Synthesis of Minimal Messenger RNA by Efficient Chemical Capping Reaction.
    Abe N; Imaeda A; Inagaki M; Li Z; Kawaguchi D; Onda K; Nakashima Y; Uchida S; Hashiya F; Kimura Y; Abe H
    ACS Chem Biol; 2022 Jun; 17(6):1308-1314. PubMed ID: 35608277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cap and polyA tail enhance translation initiation at the hepatitis C virus internal ribosome entry site by a discontinuous scanning, or shunting, mechanism.
    Wiklund L; SpÄngberg K; Goobar-Larsson L; Schwartz S
    J Hum Virol; 2001; 4(2):74-84. PubMed ID: 11437317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cap-Poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation.
    Michel YM; Poncet D; Piron M; Kean KM; Borman AM
    J Biol Chem; 2000 Oct; 275(41):32268-76. PubMed ID: 10922367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Role of AUG Triplets in Human Cap-Independent Translation Enhancing Elements.
    Juba AN; Chaput JC; Wellensiek BP
    Biochemistry; 2018 Nov; 57(44):6308-6318. PubMed ID: 30371061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of 5'-capping, 3'-polyadenylation and leader composition upon the translation and stability of mRNA in a cell-free extract derived from the yeast Saccharomyces cerevisiae.
    Gerstel B; Tuite MF; McCarthy JE
    Mol Microbiol; 1992 Aug; 6(16):2339-48. PubMed ID: 1406273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes.
    Drummond DR; Armstrong J; Colman A
    Nucleic Acids Res; 1985 Oct; 13(20):7375-94. PubMed ID: 3932972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-translational mRNA decay in Saccharomyces cerevisiae.
    Hu W; Sweet TJ; Chamnongpol S; Baker KE; Coller J
    Nature; 2009 Sep; 461(7261):225-9. PubMed ID: 19701183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the capacity of different viral internal ribosome entry segments to direct translation initiation in poly(A)-dependent reticulocyte lysates.
    Paulous S; Malnou CE; Michel YM; Kean KM; Borman AM
    Nucleic Acids Res; 2003 Jan; 31(2):722-33. PubMed ID: 12527782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(A)-tail-promoted translation in yeast: implications for translational control.
    Preiss T; Muckenthaler M; Hentze MW
    RNA; 1998 Nov; 4(11):1321-31. PubMed ID: 9814754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae.
    Iizuka N; Najita L; Franzusoff A; Sarnow P
    Mol Cell Biol; 1994 Nov; 14(11):7322-30. PubMed ID: 7935446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence that Ataxin-2 is a translational activator mediating cytoplasmic polyadenylation.
    Inagaki H; Hosoda N; Tsuiji H; Hoshino SI
    J Biol Chem; 2020 Nov; 295(47):15810-15825. PubMed ID: 32989052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signatures of host mRNA 5' terminus for efficient hantavirus cap snatching.
    Cheng E; Mir MA
    J Virol; 2012 Sep; 86(18):10173-85. PubMed ID: 22787213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5' cap-modified mRNAs.
    Ohno H; Akamine S; Mochizuki M; Hayashi K; Akichika S; Suzuki T; Saito H
    Nucleic Acids Res; 2023 Apr; 51(6):e34. PubMed ID: 36731515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.
    Svitkin YV; Herdy B; Costa-Mattioli M; Gingras AC; Raught B; Sonenberg N
    Mol Cell Biol; 2005 Dec; 25(23):10556-65. PubMed ID: 16287867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new framework for understanding IRES-mediated translation.
    Komar AA; Mazumder B; Merrick WC
    Gene; 2012 Jul; 502(2):75-86. PubMed ID: 22555019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5' noncoding region.
    Pelletier J; Kaplan G; Racaniello VR; Sonenberg N
    Mol Cell Biol; 1988 Mar; 8(3):1103-12. PubMed ID: 2835660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo and in vitro analysis of poly(A) length effects on mRNA translation.
    Peng J; Murray EL; Schoenberg DR
    Methods Mol Biol; 2008; 419():215-30. PubMed ID: 18369986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.