These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38608790)
1. Stretch-shortening cycles protect against the age-related loss of power generation in rat single muscle fibres. Patterson MA; Hinks A; Njai BS; Dalton BE; Hubbard EF; Power GA Exp Gerontol; 2024 Jun; 190():112423. PubMed ID: 38608790 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions. Roots H; Offer GW; Ranatunga KW J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136 [TBL] [Abstract][Full Text] [Related]
3. Energy cost of isometric force production after active shortening in skinned muscle fibres. Joumaa V; Fitzowich A; Herzog W J Exp Biol; 2017 Apr; 220(Pt 8):1509-1515. PubMed ID: 28232399 [TBL] [Abstract][Full Text] [Related]
4. Sarcomere length changes during end-held (isometric) contractions in intact mammalian (rat) fast and slow muscle fibres. Mutungi G; Ranatunga KW J Muscle Res Cell Motil; 2000; 21(6):565-75. PubMed ID: 11206134 [TBL] [Abstract][Full Text] [Related]
5. Unlocking the benefit of active stretch: the eccentric muscle action, not the preload, maximizes muscle-tendon unit stretch-shortening cycle performance. Goecking T; Holzer D; Hahn D; Siebert T; Seiberl W J Appl Physiol (1985); 2024 Aug; 137(2):394-408. PubMed ID: 38932683 [TBL] [Abstract][Full Text] [Related]
6. Force re-development after shortening reveals a role for titin in stretch-shortening performance enhancement in skinned muscle fibres. Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T J Exp Biol; 2024 Sep; 227(17):. PubMed ID: 39119673 [TBL] [Abstract][Full Text] [Related]
7. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats. Macpherson PC; Dennis RG; Faulkner JA J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):523-33. PubMed ID: 9147335 [TBL] [Abstract][Full Text] [Related]
8. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres. Ranatunga KW; Coupland ME; Pinniger GJ; Roots H; Offer GW J Physiol; 2007 Nov; 585(Pt 1):263-77. PubMed ID: 17916609 [TBL] [Abstract][Full Text] [Related]
9. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. Griffiths RI J Physiol; 1991 May; 436():219-36. PubMed ID: 2061831 [TBL] [Abstract][Full Text] [Related]
10. Influence of stretch magnitude on the stretch-shortening cycle in skinned muscle fibres. Fukutani A; Herzog W J Exp Biol; 2019 Jun; 222(Pt 13):. PubMed ID: 31171600 [TBL] [Abstract][Full Text] [Related]
11. Energy Cost of Force Production After a Stretch-Shortening Cycle in Skinned Muscle Fibers: Does Muscle Efficiency Increase? Joumaa V; Fukutani A; Herzog W Front Physiol; 2020; 11():567538. PubMed ID: 33536930 [TBL] [Abstract][Full Text] [Related]
12. Influence of residual force enhancement and elongation of attached cross-bridges on stretch-shortening cycle in skinned muscle fibers. Fukutani A; Joumaa V; Herzog W Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29180479 [TBL] [Abstract][Full Text] [Related]
13. Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles. Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T Front Physiol; 2020; 11():921. PubMed ID: 32848862 [TBL] [Abstract][Full Text] [Related]
14. The influence of velocity of stretch-shortening contractions on muscle performance during chronic exposure: age effects. Cutlip RG; Baker BA; Geronilla KB; Kashon ML; Wu JZ Appl Physiol Nutr Metab; 2007 Jun; 32(3):443-53. PubMed ID: 17510679 [TBL] [Abstract][Full Text] [Related]
15. Residual force enhancement and force depression in human single muscle fibres. Pinnell RAM; Mashouri P; Mazara N; Weersink E; Brown SHM; Power GA J Biomech; 2019 Jun; 91():164-169. PubMed ID: 31155213 [TBL] [Abstract][Full Text] [Related]
16. An analysis of the temperature dependence of force, during steady shortening at different velocities, in (mammalian) fast muscle fibres. Roots H; Ranatunga KW J Muscle Res Cell Motil; 2008; 29(1):9-24. PubMed ID: 18523851 [TBL] [Abstract][Full Text] [Related]
17. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres. McDonald KS; Wolff MR; Moss RL J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220 [TBL] [Abstract][Full Text] [Related]
18. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis. Lännergren J J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of force enhancement during and after lengthening of active muscle: a temperature dependence study. Roots H; Pinniger GJ; Offer GW; Ranatunga KW J Muscle Res Cell Motil; 2012 Oct; 33(5):313-25. PubMed ID: 22706970 [TBL] [Abstract][Full Text] [Related]
20. Regional variation in the mechanical properties and fibre-type composition of the rat extensor digitorum longus muscle. Kissane RWP; Egginton S; Askew GN Exp Physiol; 2018 Jan; 103(1):111-124. PubMed ID: 29076192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]