These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38608928)

  • 1. Unraveling the Gordian knot of coronary pressure-flow autoregulation.
    Tune JD; Warne CM; Essajee SI; Tucker SM; Figueroa CA; Dick GM; Beard DA
    J Mol Cell Cardiol; 2024 May; 190():82-91. PubMed ID: 38608928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disentangling the Gordian knot of local metabolic control of coronary blood flow.
    Tune JD; Goodwill AG; Kiel AM; Baker HE; Bender SB; Merkus D; Duncker DJ
    Am J Physiol Heart Circ Physiol; 2020 Jan; 318(1):H11-H24. PubMed ID: 31702972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K+ATP channels and adenosine are not necessary for coronary autoregulation.
    Stepp DW; Kroll K; Feigl EO
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1299-308. PubMed ID: 9321819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of tachycardia on regional function and transmural myocardial perfusion during graded coronary pressure reduction in conscious dogs.
    Canty JM; Giglia J; Kandath D
    Circulation; 1990 Nov; 82(5):1815-25. PubMed ID: 2225378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation of Coronary Blood Supply in Response to Demand: JACC Review Topic of the Week.
    Johnson NP; Gould KL; De Bruyne B
    J Am Coll Cardiol; 2021 May; 77(18):2335-2345. PubMed ID: 33958131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of voltage-dependent K+ and Ca2+ channels to coronary pressure-flow autoregulation.
    Berwick ZC; Moberly SP; Kohr MC; Morrical EB; Kurian MM; Dick GM; Tune JD
    Basic Res Cardiol; 2012 May; 107(3):264. PubMed ID: 22466959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative model of coronary flow in anatomically based vasculature under myogenic, shear, and metabolic regulation.
    Namani R; Kassab GS; Lanir Y
    J Gen Physiol; 2018 Jan; 150(1):145-168. PubMed ID: 29196421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-sensing pathways below autoregulatory threshold act to sustain myocardial oxygen delivery during reductions in perfusion pressure.
    Warne CM; Essajee SI; Tucker SM; Figueroa CA; Beard DA; Dick GM; Tune JD
    Basic Res Cardiol; 2023 Mar; 118(1):12. PubMed ID: 36988670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coronary pressure-flow relations in hypertensive left ventricular hypertrophy. Comparison of intact autoregulation with physiological and pharmacological vasodilation in the dog.
    Jeremy RW; Fletcher PJ; Thompson J
    Circ Res; 1989 Jul; 65(1):224-36. PubMed ID: 2525430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary autoregulation.
    Feigl EO
    J Hypertens Suppl; 1989 Sep; 7(4):S55-8; discussion S59. PubMed ID: 2681597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coronary pressure-flow autoregulation protects myocardium from pressure-induced changes in oxygen consumption.
    Bai XJ; Iwamoto T; Williams AG; Fan WL; Downey HF
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2359-68. PubMed ID: 8023997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of transient coronary occlusion on coronary blood flow autoregulation, vasodilator reserve and response to adenosine in the dog.
    Ito BR; Libraty DH; Engler RL
    J Am Coll Cardiol; 1991 Sep; 18(3):858-67. PubMed ID: 1869750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of attenuated pressure-flow autoregulation in right coronary circulation of dogs.
    Yonekura S; Watanabe N; Caffrey JL; Gaugl JF; Downey HF
    Circ Res; 1987 Jan; 60(1):133-41. PubMed ID: 3568284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between myocardial oxygenation and blood pressure: Experimental validation using oxygenation-sensitive cardiovascular magnetic resonance.
    Guensch DP; Fischer K; Jung C; Hurni S; Winkler BM; Jung B; Vogt AP; Eberle B
    PLoS One; 2019; 14(1):e0210098. PubMed ID: 30650118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upward shift of the lower range of coronary flow autoregulation in hypertensive patients with hypertrophy of the left ventricle.
    Polese A; De Cesare N; Montorsi P; Fabbiocchi F; Guazzi M; Loaldi A; Guazzi MD
    Circulation; 1991 Mar; 83(3):845-53. PubMed ID: 1825626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No effect of coronary perfusion on regional myocardial function within the autoregulatory range in pigs. Evidence against the Gregg phenomenon.
    Schulz R; Guth BD; Heusch G
    Circulation; 1991 Apr; 83(4):1390-403. PubMed ID: 2013156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open-loop (feed-forward) and feedback control of coronary blood flow during exercise, cardiac pacing, and pressure changes.
    Pradhan RK; Feigl EO; Gorman MW; Brengelmann GL; Beard DA
    Am J Physiol Heart Circ Physiol; 2016 Jun; 310(11):H1683-94. PubMed ID: 27037372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coronary blood flow autoregulation and flow heterogeneity in the stunned heart.
    Shnier CB; Cason BA; Horton AF; Hickey RF
    Jpn Heart J; 1994 Sep; 35(5):654-60. PubMed ID: 7830329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide modulates coronary autoregulation in the guinea pig.
    Ueeda M; Silvia SK; Olsson RA
    Circ Res; 1992 Jun; 70(6):1296-303. PubMed ID: 1374299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-scale model of the coronary circulation applied to investigate transmural myocardial flow.
    Ge X; Yin Z; Fan Y; Vassilevski Y; Liang F
    Int J Numer Method Biomed Eng; 2018 Oct; 34(10):e3123. PubMed ID: 29947132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.