These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38609237)

  • 1. Effect of wet-aging on meat quality and exudate metabolome changes in different beef muscles.
    Yu Q; Gu X; Liu Q; Wen R; Sun C
    Food Res Int; 2024 May; 184():114260. PubMed ID: 38609237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing Pork Exudate Metabolomics to Reveal the Impact of Aging on Meat Quality.
    Yu Q; Cooper B; Sobreira T; Kim YHB
    Foods; 2021 Mar; 10(3):. PubMed ID: 33804730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumbling and subsequent aging improves tenderness of beef longissimus lumborum and semitendinosus steaks by disrupting myofibrillar structure and enhancing proteolysis.
    Tuell JR; Nondorf MJ; Abdelhaseib M; Setyabrata D; Kim YHB
    J Anim Sci; 2022 Mar; 100(3):. PubMed ID: 35357503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of changes in proteomes of beef exudate and meat quality attributes during wet-aging.
    Yu Q; Li S; Cheng B; Brad Kim YH; Sun C
    Food Chem X; 2023 Mar; 17():100608. PubMed ID: 36974193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic changes of myofibrillar proteins in Podolian meat during aging: focusing on tenderness.
    Marino R; Della Malva A; Albenzio M
    J Anim Sci; 2015 Mar; 93(3):1376-87. PubMed ID: 26020914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria changes and metabolome differences of bovine longissimus lumborum and psoas major during 24 h postmortem.
    Yu Q; Tian X; Shao L; Li X; Dai R
    Meat Sci; 2020 Aug; 166():108112. PubMed ID: 32302932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free proteomic strategy to compare the proteome differences between longissimus lumborum and psoas major muscles during early postmortem periods.
    Yu Q; Tian X; Shao L; Xu L; Dai R; Li X
    Food Chem; 2018 Dec; 269():427-435. PubMed ID: 30100455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of muscle exudate protein composition as an indicator of beef tenderness.
    Bowker BC; Eastridge JS; Solomon MB
    J Food Sci; 2014 Jul; 79(7):C1292-7. PubMed ID: 24961890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative changes in peptides derived from proteins in beef tenderloin (psoas major muscle) and striploin (longissimus lumborum muscle) during cold storage.
    Kim GD; Yun Lee S; Jung EY; Song S; Jin Hur S
    Food Chem; 2021 Feb; 338():128029. PubMed ID: 32932089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics and metabolomics profiling of meat exudate to determine the impact of postmortem aging on oxidative stability of beef muscles.
    Setyabrata D; Ma D; Xie S; Thimmapuram J; Cooper BR; Aryal UK; Kim YHB
    Food Chem X; 2023 Jun; 18():100660. PubMed ID: 37025416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical and microbial characteristics of
    Ali M; Park JY; Lee SY; Choi YS; Nam KC
    J Anim Sci Technol; 2021 Jan; 63(1):149-159. PubMed ID: 33987592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exudate Protein Composition and Meat Tenderness of Broiler Breast Fillets.
    Bowker B; Gamble G; Zhuang H
    Poult Sci; 2016 Jan; 95(1):133-7. PubMed ID: 26574030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of suspension method and aging time on meat quality of Chinese fattened cattle M. Longissimus dorsi.
    Hou X; Liang R; Mao Y; Zhang Y; Niu L; Wang R; Liu C; Liu Y; Luo X
    Meat Sci; 2014 Jan; 96(1):640-5. PubMed ID: 24056407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in toughness and aging potential of
    Song Z; Hwang I
    J Anim Sci Technol; 2023 Jul; 65(4):865-877. PubMed ID: 37970498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing and thawing or freezing, thawing, and aging effects on beef tenderness.
    Grayson AL; King DA; Shackelford SD; Koohmaraie M; Wheeler TL
    J Anim Sci; 2014 Jun; 92(6):2735-40. PubMed ID: 24671601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem mass tag labeling to characterize muscle-specific proteome changes in beef during early postmortem period.
    Zhai C; Djimsa BA; Prenni JE; Woerner DR; Belk KE; Nair MN
    J Proteomics; 2020 Jun; 222():103794. PubMed ID: 32330628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics Profiling to Determine the Effect of Postmortem Aging on Color and Lipid Oxidative Stabilities of Different Bovine Muscles.
    Ma D; Kim YHB; Cooper B; Oh JH; Chun H; Choe JH; Schoonmaker JP; Ajuwon K; Min B
    J Agric Food Chem; 2017 Aug; 65(31):6708-6716. PubMed ID: 28700223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sampling position in fresh, dry-aged and wet-aged beef from M. Longissimus dorsi of Simmental cattle analyzed by
    Bischof G; Witte F; Terjung N; Januschewski E; Heinz V; Juadjur A; Gibis M
    Food Res Int; 2022 Jun; 156():111334. PubMed ID: 35651084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteolytic changes of myofibrillar and small heat shock proteins in different bovine muscles during aging: Their relevance to tenderness and water-holding capacity.
    Ma D; Kim YHB
    Meat Sci; 2020 May; 163():108090. PubMed ID: 32087505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early postmortem muscle proteome and metabolome of beef longissimus thoracis muscle classified by pH at 6 hours postmortem.
    Schulte MD; Hochmuth KG; Steadham EM; Lonergan SM; Hansen SL; Huff-Lonergan EJ
    J Proteomics; 2023 Jan; 271():104756. PubMed ID: 36273510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.