BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 38609367)

  • 21. Unusual heme-histidine bond in the active site of a chaperone.
    Lee D; Pervushin K; Bischof D; Braun M; Thöny-Meyer L
    J Am Chem Soc; 2005 Mar; 127(11):3716-7. PubMed ID: 15771504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Handling heme: The mechanisms underlying the movement of heme within and between cells.
    Donegan RK; Moore CM; Hanna DA; Reddi AR
    Free Radic Biol Med; 2019 Mar; 133():88-100. PubMed ID: 30092350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequences, Domain Architectures, and Biological Functions of the Serine/Threonine and Histidine Kinases in Synechocystis sp. PCC 6803.
    Xu W; Wang Y
    Appl Biochem Biotechnol; 2019 Aug; 188(4):1022-1065. PubMed ID: 30778824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prokaryotic expression of the heme- and flavin-binding domains of rat neuronal nitric oxide synthase as distinct polypeptides: identification of the heme-binding proximal thiolate ligand as cysteine-415.
    McMillan K; Masters BS
    Biochemistry; 1995 Mar; 34(11):3686-93. PubMed ID: 7534476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assignment of the hyperfine-shifted 1H-NMR signals of the heme in the oxygen sensor FixL from Rhizobium meliloti.
    Bertolucci C; Ming LJ; Gonzalez G; Gilles-Gonzalez MA
    Chem Biol; 1996 Jul; 3(7):561-6. PubMed ID: 8807888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural dynamics of proximal heme pocket in HemAT-Bs associated with oxygen dissociation.
    Yoshida Y; Ishikawa H; Aono S; Mizutani Y
    Biochim Biophys Acta; 2012 Jul; 1824(7):866-72. PubMed ID: 22564695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the function of heme distortion in the H-NOX family.
    Olea C; Boon EM; Pellicena P; Kuriyan J; Marletta MA
    ACS Chem Biol; 2008 Nov; 3(11):703-10. PubMed ID: 19032091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning, expression, purification, and preliminary characterization of a putative hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803.
    Scott NL; Lecomte JT
    Protein Sci; 2000 Mar; 9(3):587-97. PubMed ID: 10752621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron paramagnetic resonance studies of NO-heme-nitrogen base. An interpretation of electron paramagnetic resonance spectra of NO-hemoproteins.
    Kobayashi K; Tamura M; Hayashi K
    Biochim Biophys Acta; 1982 Mar; 702(1):23-9. PubMed ID: 6279163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevotella intermedia produces two proteins homologous to Porphyromonas gingivalis HmuY but with different heme coordination mode.
    Bielecki M; Antonyuk S; Strange RW; Siemińska K; Smalley JW; Mackiewicz P; Śmiga M; Cowan M; Capper MJ; Ślęzak P; Olczak M; Olczak T
    Biochem J; 2020 Jan; 477(2):381-405. PubMed ID: 31899475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor.
    Delgado-Nixon VM; Gonzalez G; Gilles-Gonzalez MA
    Biochemistry; 2000 Mar; 39(10):2685-91. PubMed ID: 10704219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function.
    Bracken CS; Baer MT; Abdur-Rashid A; Helms W; Stojiljkovic I
    J Bacteriol; 1999 Oct; 181(19):6063-72. PubMed ID: 10498719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drosophila nuclear receptor E75 is a thiolate hemoprotein.
    de Rosny E; de Groot A; Jullian-Binard C; Gaillard J; Borel F; Pebay-Peyroula E; Fontecilla-Camps JC; Jouve HM
    Biochemistry; 2006 Aug; 45(32):9727-34. PubMed ID: 16893174
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Bielecki M; Antonyuk S; Strange RW; Smalley JW; Mackiewicz P; Śmiga M; Stępień P; Olczak M; Olczak T
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30266745
    [No Abstract]   [Full Text] [Related]  

  • 35. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120.
    Tang K; Knipp M; Liu BB; Cox N; Stabel R; He Q; Zhou M; Scheer H; Zhao KH; Gärtner W
    J Biol Chem; 2015 Jul; 290(31):19067-80. PubMed ID: 26063806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmembrane and PAS domains of the histidine kinase Hik33 as regulators of cold and light responses in the cyanobacterium Synechocystis sp. PCC 6803.
    Leusenko AV; Mironov KS; Los DA
    Biochimie; 2024 Mar; 218():76-84. PubMed ID: 37567357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of heme environments and proximal ligands in peroxidases and other hemoproteins through carbon-13 nuclear magnetic resonance spectroscopy of carbon monoxide complexes.
    Behere DV; Gonzalez-Vergara E; Goff HM
    Biochem Biophys Res Commun; 1985 Sep; 131(2):607-13. PubMed ID: 2996515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions.
    Krüger A; Keppel M; Sharma V; Frunzke J
    FEMS Microbiol Rev; 2022 May; 46(3):. PubMed ID: 35026033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structure and NO binding properties of the nitrophorin-like heme-binding protein from Arabidopsis thaliana gene locus At1g79260.1.
    Bianchetti CM; Blouin GC; Bitto E; Olson JS; Phillips GN
    Proteins; 2010 Mar; 78(4):917-31. PubMed ID: 19938152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of two important heme site residues (cysteine 75 and histidine 77) in CooA, the CO-sensing transcription factor of Rhodospirillum rubrum.
    Shelver D; Thorsteinsson MV; Kerby RL; Chung SY; Roberts GP; Reynolds MF; Parks RB; Burstyn JN
    Biochemistry; 1999 Mar; 38(9):2669-78. PubMed ID: 10052937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.