These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38609429)

  • 1. Fast learning without synaptic plasticity in spiking neural networks.
    Subramoney A; Bellec G; Scherr F; Legenstein R; Maass W
    Sci Rep; 2024 Apr; 14(1):8557. PubMed ID: 38609429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks.
    Zhang X; Lu J; Wang Z; Wang R; Wei J; Shi T; Dou C; Wu Z; Zhu J; Shang D; Xing G; Chan M; Liu Q; Liu M
    Sci Bull (Beijing); 2021 Aug; 66(16):1624-1633. PubMed ID: 36654296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.
    Rahimi Azghadi M; Iannella N; Al-Sarawi S; Abbott D
    PLoS One; 2014; 9(2):e88326. PubMed ID: 24551089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STDP Forms Associations between Memory Traces in Networks of Spiking Neurons.
    Pokorny C; Ison MJ; Rao A; Legenstein R; Papadimitriou C; Maass W
    Cereb Cortex; 2020 Mar; 30(3):952-968. PubMed ID: 31403679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections.
    Dong Y; Zhao D; Li Y; Zeng Y
    Neural Netw; 2023 Aug; 165():799-808. PubMed ID: 37418862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse coding with a somato-dendritic rule.
    Drix D; Hafner VV; Schmuker M
    Neural Netw; 2020 Nov; 131():37-49. PubMed ID: 32750603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy efficient synaptic plasticity.
    Li HL; van Rossum MC
    Elife; 2020 Feb; 9():. PubMed ID: 32053106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing principles of synaptic integration in the optimization of deep neural networks.
    Dellaferrera G; Woźniak S; Indiveri G; Pantazi A; Eleftheriou E
    Nat Commun; 2022 Apr; 13(1):1885. PubMed ID: 35393422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Remarkable Robustness of Surrogate Gradient Learning for Instilling Complex Function in Spiking Neural Networks.
    Zenke F; Vogels TP
    Neural Comput; 2021 Mar; 33(4):899-925. PubMed ID: 33513328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpikePropamine: Differentiable Plasticity in Spiking Neural Networks.
    Schmidgall S; Ashkanazy J; Lawson W; Hays J
    Front Neurorobot; 2021; 15():629210. PubMed ID: 34630063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surrogate gradients for analog neuromorphic computing.
    Cramer B; Billaudelle S; Kanya S; Leibfried A; Grübl A; Karasenko V; Pehle C; Schreiber K; Stradmann Y; Weis J; Schemmel J; Zenke F
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-inspired neural circuit evolution for spiking neural networks.
    Shen G; Zhao D; Dong Y; Zeng Y
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2218173120. PubMed ID: 37729206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity.
    Lobov SA; Berdnikova ES; Zharinov AI; Kurganov DP; Kazantsev VB
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.