These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. The structure of the γ-TuRC at the microtubule minus end - not just one solution. Gao Q; Vermeulen BJA; Würtz M; Shin H; Erdogdu D; Zheng A; Hofer FW; Neuner A; Pfeffer S; Schiebel E Bioessays; 2024 Sep; 46(9):e2400117. PubMed ID: 39044599 [TBL] [Abstract][Full Text] [Related]
9. Asymmetric Molecular Architecture of the Human γ-Tubulin Ring Complex. Wieczorek M; Urnavicius L; Ti SC; Molloy KR; Chait BT; Kapoor TM Cell; 2020 Jan; 180(1):165-175.e16. PubMed ID: 31862189 [TBL] [Abstract][Full Text] [Related]
11. Modular assembly of the principal microtubule nucleator γ-TuRC. Würtz M; Zupa E; Atorino ES; Neuner A; Böhler A; Rahadian AS; Vermeulen BJA; Tonon G; Eustermann S; Schiebel E; Pfeffer S Nat Commun; 2022 Jan; 13(1):473. PubMed ID: 35078983 [TBL] [Abstract][Full Text] [Related]
12. The transition state and regulation of γ-TuRC-mediated microtubule nucleation revealed by single molecule microscopy. Thawani A; Rale MJ; Coudray N; Bhabha G; Stone HA; Shaevitz JW; Petry S Elife; 2020 Jun; 9():. PubMed ID: 32538784 [TBL] [Abstract][Full Text] [Related]
13. Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Aldaz H; Rice LM; Stearns T; Agard DA Nature; 2005 May; 435(7041):523-7. PubMed ID: 15917813 [TBL] [Abstract][Full Text] [Related]
14. CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC. Rai D; Song Y; Hua S; Stecker K; Monster JL; Yin V; Stucchi R; Xu Y; Zhang Y; Chen F; Katrukha EA; Altelaar M; Heck AJR; Wieczorek M; Jiang K; Akhmanova A Nat Cell Biol; 2024 Mar; 26(3):404-420. PubMed ID: 38424271 [TBL] [Abstract][Full Text] [Related]
15. Microtubule Nucleation Properties of Single Human γTuRCs Explained by Their Cryo-EM Structure. Consolati T; Locke J; Roostalu J; Chen ZA; Gannon J; Asthana J; Lim WM; Martino F; Cvetkovic MA; Rappsilber J; Costa A; Surrey T Dev Cell; 2020 Jun; 53(5):603-617.e8. PubMed ID: 32433913 [TBL] [Abstract][Full Text] [Related]
16. Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics. von Loeffelholz O; Venables NA; Drummond DR; Katsuki M; Cross R; Moores CA Nat Commun; 2017 Dec; 8(1):2110. PubMed ID: 29235477 [TBL] [Abstract][Full Text] [Related]
17. The cryo-EM structure of a γ-TuSC elucidates architecture and regulation of minimal microtubule nucleation systems. Zupa E; Zheng A; Neuner A; Würtz M; Liu P; Böhler A; Schiebel E; Pfeffer S Nat Commun; 2020 Nov; 11(1):5705. PubMed ID: 33177498 [TBL] [Abstract][Full Text] [Related]
18. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Howes SC; Alushin GM; Shida T; Nachury MV; Nogales E Mol Biol Cell; 2014 Jan; 25(2):257-66. PubMed ID: 24227885 [TBL] [Abstract][Full Text] [Related]
19. Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. Moritz M; Braunfeld MB; Guénebaut V; Heuser J; Agard DA Nat Cell Biol; 2000 Jun; 2(6):365-70. PubMed ID: 10854328 [TBL] [Abstract][Full Text] [Related]
20. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation. Imasaki T; Kikkawa S; Niwa S; Saijo-Hamano Y; Shigematsu H; Aoyama K; Mitsuoka K; Shimizu T; Aoki M; Sakamoto A; Tomabechi Y; Sakai N; Shirouzu M; Taguchi S; Yamagishi Y; Setsu T; Sakihama Y; Nitta E; Takeichi M; Nitta R Elife; 2022 Jun; 11():. PubMed ID: 35762204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]