BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38609711)

  • 1. Identification of hub genes and diagnostic efficacy for triple-negative breast cancer through WGCNA and Mendelian randomization.
    Lin Y; Wang S; Yang Q
    Discov Oncol; 2024 Apr; 15(1):117. PubMed ID: 38609711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional investigation and two-sample Mendelian randomization study of neuropathic pain hub genes obtained by WGCNA analysis.
    Zeng J; Lai C; Luo J; Li L
    Front Neurosci; 2023; 17():1134330. PubMed ID: 37123369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of potential oncogenes in triple-negative breast cancer based on bioinformatics analyses.
    Xiao X; Zhang Z; Luo R; Peng R; Sun Y; Wang J; Chen X
    Oncol Lett; 2021 May; 21(5):363. PubMed ID: 33747220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel biomarkers identified in triple-negative breast cancer through RNA-sequencing.
    Chen YL; Wang K; Xie F; Zhuo ZL; Liu C; Yang Y; Wang S; Zhao XT
    Clin Chim Acta; 2022 Jun; 531():302-308. PubMed ID: 35504321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulated cyclins may be novel genes for triple-negative breast cancer based on bioinformatic analysis.
    Lu Y; Yang G; Xiao Y; Zhang T; Su F; Chang R; Ling X; Bai Y
    Breast Cancer; 2020 Sep; 27(5):903-911. PubMed ID: 32338339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer.
    Qiu P; Guo Q; Yao Q; Chen J; Lin J
    PLoS One; 2021; 16(11):e0254283. PubMed ID: 34797837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a five genes prognosis signature for triple-negative breast cancer using multi-omics methods and bioinformatics analysis.
    Ma J; Chen C; Liu S; Ji J; Wu D; Huang P; Wei D; Fan Z; Ren L
    Cancer Gene Ther; 2022 Nov; 29(11):1578-1589. PubMed ID: 35474355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis.
    Li MX; Jin LT; Wang TJ; Feng YJ; Pan CP; Zhao DM; Shao J
    Onco Targets Ther; 2018; 11():4105-4112. PubMed ID: 30140156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel prognostic genes of triple-negative breast cancer using meta-analysis and weighted gene co-expressed network analysis.
    Cao W; Jiang Y; Ji X; Guan X; Lin Q; Ma L
    Ann Transl Med; 2021 Feb; 9(3):205. PubMed ID: 33708832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of key gene modules and hub genes of human mantle cell lymphoma by coexpression network analysis.
    Guo D; Wang H; Sun L; Liu S; Du S; Qiao W; Wang W; Hou G; Zhang K; Li C; Teng Q
    PeerJ; 2020; 8():e8843. PubMed ID: 32219041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Key Prognostic Genes of Triple Negative Breast Cancer by LASSO-Based Machine Learning and Bioinformatics Analysis.
    Chen DL; Cai JH; Wang CCN
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KEGG-expressed genes and pathways in triple negative breast cancer: Protocol for a systematic review and data mining.
    Chen J; Liu C; Cen J; Liang T; Xue J; Zeng H; Zhang Z; Xu G; Yu C; Lu Z; Wang Z; Jiang J; Zhan X; Zeng J
    Medicine (Baltimore); 2020 May; 99(18):e19986. PubMed ID: 32358373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis.
    Deng JL; Xu YH; Wang G
    Front Genet; 2019; 10():695. PubMed ID: 31428132
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of hub genes in triple-negative breast cancer by integrated bioinformatics analysis.
    Wei LM; Li XY; Wang ZM; Wang YK; Yao G; Fan JH; Wang XS
    Gland Surg; 2021 Feb; 10(2):799-806. PubMed ID: 33708561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of CCNE1 confers a poorer prognosis in triple-negative breast cancer identified by bioinformatic analysis.
    Yuan Q; Zheng L; Liao Y; Wu G
    World J Surg Oncol; 2021 Mar; 19(1):86. PubMed ID: 33757543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic identification of key functional modules and genes in esophageal cancer.
    Wu R; Zhuang H; Mei YK; Sun JY; Dong T; Zhao LL; Fan ZN; Liu L
    Cancer Cell Int; 2021 Feb; 21(1):134. PubMed ID: 33632229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explore Key Genes and Mechanisms Involved in Colon Cancer Progression Based on Bioinformatics Analysis.
    Lan Y; Yang X; Wei Y; Tian Z; Zhang L; Zhou J
    Appl Biochem Biotechnol; 2024 Jan; ():. PubMed ID: 38294732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics analysis of human kallikrein 5 (
    Song Y; Bai G; Li X; Zhou L; Si Y; Liu X; Deng Y; Shi Y
    Cancer Innov; 2023 Oct; 2(5):376-390. PubMed ID: 38090381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer.
    Naorem LD; Muthaiyan M; Venkatesan A
    J Cell Biochem; 2019 Apr; 120(4):6154-6167. PubMed ID: 30302816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of key genes as potential biomarkers for triple‑negative breast cancer using integrating genomics analysis.
    Zhong G; Lou W; Shen Q; Yu K; Zheng Y
    Mol Med Rep; 2020 Feb; 21(2):557-566. PubMed ID: 31974598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.