BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38609777)

  • 1. Construction of a fused grid-based CYP2C8-Template system and the application.
    Yamazoe Y; Yamamura Y; Yoshinari K
    Drug Metab Pharmacokinet; 2024 Apr; 55():100492. PubMed ID: 38609777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a fused grid-based template system of CYP2C9 and its application.
    Yamazoe Y; Yamamura Y; Yoshinari K
    Drug Metab Pharmacokinet; 2022 Aug; 45():100451. PubMed ID: 35797783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a fused grid-based CYP2C19-Template system and the application.
    Yamamura Y; Yoshinari K; Yamazoe Y
    Drug Metab Pharmacokinet; 2023 Feb; 48():100481. PubMed ID: 36813636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a fused grid-based CYP2C18-Template system and its application to drug metabolism.
    Yamazoe Y; Yoshinari K
    Drug Metab Pharmacokinet; 2024 Feb; 54():100534. PubMed ID: 38070310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the interactions of steroidal ligands with CYP3A4 using a grid-base template system.
    Goto T; Tohkin M; Yamazoe Y
    Drug Metab Pharmacokinet; 2019 Dec; 34(6):351-364. PubMed ID: 31563329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: Solving the modes of the metabolism and inhibition.
    Yamazoe Y; Goto T; Tohkin M
    Drug Metab Pharmacokinet; 2019 Apr; 34(2):113-125. PubMed ID: 30639283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refined CYP2E1
    Yamazoe Y; Murayama N; Yoshinari K
    Drug Metab Pharmacokinet; 2021 Dec; 41():100413. PubMed ID: 34673327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile applicability of a grid-based CYP3A4 Template to understand the interacting mechanisms with the small-size ligands; part 3 of CYP3A4 Template study.
    Yamazoe Y; Goto T; Tohkin M
    Drug Metab Pharmacokinet; 2020 Jun; 35(3):253-265. PubMed ID: 32331852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of regioselectivity and preferred order of CYP1A1-mediated metabolism: Solving the interaction of human and rat CYP1A1 forms with ligands on the template system.
    Yamazoe Y; Yoshinari K
    Drug Metab Pharmacokinet; 2020 Feb; 35(1):165-185. PubMed ID: 31974042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of a grid-based CYP3A4 Template system to understand the interacting mechanisms of large-size ligands; part 4 of CYP3A4 Template study.
    Goto T; Yamazoe Y; Tohkin M
    Drug Metab Pharmacokinet; 2020 Dec; 35(6):485-496. PubMed ID: 32967779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 2: Solving substrate interactions of CYP1A2 with non-PAH substrates on the template system.
    Yamazoe Y; Yoshinari K
    Drug Metab Pharmacokinet; 2017 Oct; 32(5):229-247. PubMed ID: 28801182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of template systems for ligand interactions of CYP3A5 and CYP3A7 and their distinctions from CYP3A4 template.
    Yamazoe Y; Tohkin M
    Drug Metab Pharmacokinet; 2021 Jun; 38():100357. PubMed ID: 33866277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucuronides as Potential Anionic Substrates of Human Cytochrome P450 2C8 (CYP2C8).
    Ma Y; Fu Y; Khojasteh SC; Dalvie D; Zhang D
    J Med Chem; 2017 Nov; 60(21):8691-8705. PubMed ID: 28653847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 1. Focusing on polycyclic arenes and the related chemicals.
    Yamazoe Y; Ito K; Yamamura Y; Iwama R; Yoshinari K
    Drug Metab Pharmacokinet; 2016 Oct; 31(5):363-384. PubMed ID: 27665699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of fused-grid-based CYP-Template systems for genotoxic substances to understand the metabolisms.
    Yamazoe Y; Murayama N; Kawamura T; Yamada T
    Genes Environ; 2023 Aug; 45(1):22. PubMed ID: 37544994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automated cocktail method for in vitro assessment of direct and time-dependent inhibition of nine major cytochrome P450 enzymes - application to establishing CYP2C8 inhibitor selectivity.
    Kahma H; Aurinsalo L; Neuvonen M; Katajamäki J; Paludetto MN; Viinamäki J; Launiainen T; Filppula AM; Tornio A; Niemi M; Backman JT
    Eur J Pharm Sci; 2021 Jul; 162():105810. PubMed ID: 33753217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential inhibition of human CYP2C8 and molecular docking interactions elicited by sorafenib and its major N-oxide metabolite.
    Nair PC; Gillani TB; Rawling T; Murray M
    Chem Biol Interact; 2021 Apr; 338():109401. PubMed ID: 33556367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of CYP2C8 by Acyl Glucuronides of Gemfibrozil and Clopidogrel: Pharmacological Significance, Progress and Challenges.
    Shah MB
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucuronidation converts clopidogrel to a strong time-dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug-drug interactions.
    Tornio A; Filppula AM; Kailari O; Neuvonen M; Nyrönen TH; Tapaninen T; Neuvonen PJ; Niemi M; Backman JT
    Clin Pharmacol Ther; 2014 Oct; 96(4):498-507. PubMed ID: 24971633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human CYP2C8: structure, substrate specificity, inhibitor selectivity, inducers and polymorphisms.
    Lai XS; Yang LP; Li XT; Liu JP; Zhou ZW; Zhou SF
    Curr Drug Metab; 2009 Nov; 10(9):1009-47. PubMed ID: 20214592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.