BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38609853)

  • 1. Split Pool Ligation-based Single-cell Transcriptome sequencing (SPLiT-seq) data processing pipeline comparison.
    Kuijpers L; Hornung B; van den Hout-van Vroonhoven MCGN; van IJcken WFJ; Grosveld F; Mulugeta E
    BMC Genomics; 2024 Apr; 25(1):361. PubMed ID: 38609853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SCSit: A high-efficiency preprocessing tool for single-cell sequencing data from SPLiT-seq.
    Luan MW; Lin JL; Wang YF; Liu YX; Xiao CL; Wu R; Xie SQ
    Comput Struct Biotechnol J; 2021; 19():4574-4580. PubMed ID: 34471500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of common alignment tools for single-cell RNA sequencing.
    Brüning RS; Tombor L; Schulz MH; Dimmeler S; John D
    Gigascience; 2022 Jan; 11():. PubMed ID: 35084033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows.
    You Y; Tian L; Su S; Dong X; Jabbari JS; Hickey PF; Ritchie ME
    Genome Biol; 2021 Dec; 22(1):339. PubMed ID: 34906205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultra high-throughput, massively multiplexable, single-cell RNA-seq platform in yeasts.
    Brettner L; Eder R; Schmidlin K; Geiler-Samerotte K
    Yeast; 2024 Apr; 41(4):242-255. PubMed ID: 38282330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines.
    Audoux J; Salson M; Grosset CF; Beaumeunier S; Holder JM; Commes T; Philippe N
    BMC Bioinformatics; 2017 Sep; 18(1):428. PubMed ID: 28969586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pheniqs 2.0: accurate, high-performance Bayesian decoding and confidence estimation for combinatorial barcode indexing.
    Galanti L; Shasha D; Gunsalus KC
    BMC Bioinformatics; 2021 Jul; 22(1):359. PubMed ID: 34215187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding.
    Rosenberg AB; Roco CM; Muscat RA; Kuchina A; Sample P; Yao Z; Graybuck LT; Peeler DJ; Mukherjee S; Chen W; Pun SH; Sellers DL; Tasic B; Seelig G
    Science; 2018 Apr; 360(6385):176-182. PubMed ID: 29545511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MGcount: a total RNA-seq quantification tool to address multi-mapping and multi-overlapping alignments ambiguity in non-coding transcripts.
    Hita A; Brocart G; Fernandez A; Rehmsmeier M; Alemany A; Schvartzman S
    BMC Bioinformatics; 2022 Jan; 23(1):39. PubMed ID: 35030988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alevin-fry unlocks rapid, accurate and memory-frugal quantification of single-cell RNA-seq data.
    He D; Zakeri M; Sarkar H; Soneson C; Srivastava A; Patro R
    Nat Methods; 2022 Mar; 19(3):316-322. PubMed ID: 35277707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data.
    Tian L; Su S; Dong X; Amann-Zalcenstein D; Biben C; Seidi A; Hilton DJ; Naik SH; Ritchie ME
    PLoS Comput Biol; 2018 Aug; 14(8):e1006361. PubMed ID: 30096152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding.
    Quinodoz SA; Bhat P; Chovanec P; Jachowicz JW; Ollikainen N; Detmar E; Soehalim E; Guttman M
    Nat Protoc; 2022 Jan; 17(1):36-75. PubMed ID: 35013617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data.
    Srivastava A; Malik L; Smith T; Sudbery I; Patro R
    Genome Biol; 2019 Mar; 20(1):65. PubMed ID: 30917859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LongGF: computational algorithm and software tool for fast and accurate detection of gene fusions by long-read transcriptome sequencing.
    Liu Q; Hu Y; Stucky A; Fang L; Zhong JF; Wang K
    BMC Genomics; 2020 Dec; 21(Suppl 11):793. PubMed ID: 33372596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing single-cell RNA-seq datasets using SingCellaR.
    Wang G; Wen WX; Mead AJ; Roy A; Psaila B; Thongjuea S
    STAR Protoc; 2022 Jun; 3(2):101266. PubMed ID: 35391938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of high-throughput single-cell RNA sequencing data processing pipelines.
    Gao M; Ling M; Tang X; Wang S; Xiao X; Qiao Y; Yang W; Yu R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate inference of isoforms from multiple sample RNA-Seq data.
    Tasnim M; Ma S; Yang EW; Jiang T; Li W
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S15. PubMed ID: 25708199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data.
    Feng D; Whitehurst CE; Shan D; Hill JD; Yue YG
    BMC Genomics; 2019 Aug; 20(1):676. PubMed ID: 31455220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.