These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38610341)

  • 1. Fuzzy Neural Network PID-Based Constant Deceleration Control for Automated Mine Electric Vehicles Using EMB System.
    Li J; Ma C; Jiang Y
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of the intelligent control system of autonomous vehicles based on edge computing.
    Ming G
    PLoS One; 2023; 18(2):e0281294. PubMed ID: 36730359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clamping force control of electro-mechanical brakes based on driver intentions.
    Li J; Wu T; Fan T; He Y; Meng L; Han Z
    PLoS One; 2020; 15(9):e0239608. PubMed ID: 32970768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vehicle Deceleration Prediction Model to Reflect Individual Driver Characteristics by Online Parameter Learning for Autonomous Regenerative Braking of Electric Vehicles.
    Min K; Sim G; Ahn S; Sunwoo M; Jo K
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31561468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on Two-Stage Semi-Active ISD Suspension Based on Improved Fuzzy Neural Network PID Control.
    Jin L; Fan J; Du F; Zhan M
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing an improved automatic preventive braking system based on safety-critical car-following events from naturalistic driving study data.
    Zhou W; Wang X; Glaser Y; Wu X; Xu X
    Accid Anal Prev; 2022 Dec; 178():106834. PubMed ID: 36150234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy Improvement of Braking Force via Deceleration Feedback Functions Applied to Braking Systems.
    Wang Y; Wen X; Meng H; Zhang X; Li R; Serra R
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the change of brake wear particulate matter emissions through powertrain electrification in passenger vehicles.
    Hicks W; Green DC; Beevers S
    Environ Pollut; 2023 Nov; 336():122400. PubMed ID: 37595730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle.
    Garrosa M; Olmeda E; Díaz V; Mendoza-Petit MF
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deceleration Planning Algorithm Based on Classified Multi-Layer Perceptron Models for Smart Regenerative Braking of EV in Diverse Deceleration Conditions.
    Sim G; Min K; Ahn S; Sunwoo M; Jo K
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Braking performance oriented multi-objective optimal design of electro-mechanical brake parameters.
    Wu T; Li J; Qin X
    PLoS One; 2021; 16(5):e0251714. PubMed ID: 34010364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of automatic emergency braking responses in passenger vehicles evaluated in the IIHS front crash prevention program.
    Kidd DG; Perez-Rapela D; Jermakian JS
    Accid Anal Prev; 2023 Sep; 190():107150. PubMed ID: 37301163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research and implementation of variable-domain fuzzy PID intelligent control method based on Q-Learning for self-driving in complex scenarios.
    Yao Y; Ma N; Wang C; Wu Z; Xu C; Zhang J
    Math Biosci Eng; 2023 Jan; 20(3):6016-6029. PubMed ID: 36896561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability analysis of a phase-shifted full-bridge circuit for electric vehicles based on adaptive neural fuzzy PID control.
    Liu Y; Huang Y; Zhang H; Huang Q
    Sci Rep; 2021 Oct; 11(1):20040. PubMed ID: 34625607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Longitudinal Active Collision Avoidance of Autonomous Emergency Braking Pedestrian System (AEB-P).
    Yang W; Zhang X; Lei Q; Cheng X
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced emergency braking controller design for pedestrian protection oriented automotive collision avoidance system.
    Lie G; Zejian R; Pingshu G; Jing C
    ScientificWorldJournal; 2014; 2014():218246. PubMed ID: 25097870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The migration of CO and PM under different working conditions of trackless rubber-tyred vehicle and health risk assessment of underground personnel.
    Liu C; Nie W; Hua Y; Niu W
    Chemosphere; 2022 Nov; 307(Pt 1):135750. PubMed ID: 35870607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating Automated Emergency Braking with and without Torricelli Vacuum Emergency Braking for cyclists: Effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities.
    Jeppsson H; Lubbe N
    Accid Anal Prev; 2020 Jul; 142():105538. PubMed ID: 32470821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy recapture through deceleration - regenerative braking in electric vehicles from a user perspective.
    Cocron P; Bühler F; Franke T; Neumann I; Dielmann B; Krems JF
    Ergonomics; 2013; 56(8):1203-15. PubMed ID: 23767823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuzzy Surrogate Safety Metrics for real-time assessment of rear-end collision risk. A study based on empirical observations.
    Mattas K; Makridis M; Botzoris G; Kriston A; Minarini F; Papadopoulos B; Re F; Rognelund G; Ciuffo B
    Accid Anal Prev; 2020 Dec; 148():105794. PubMed ID: 33032008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.