These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38610377)

  • 1. The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope.
    Maxa J; Šabacká P; Mazal J; Neděla V; Binar T; Bača P; Talár J; Bayer R; Čudek P
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM).
    Maxa J; Neděla V; Šabacká P; Binar T
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical-Physics Analyses of the Nozzle Shaping at the Aperture Gas Outlet into Free Space under ESEM Pressure Conditions.
    Šabacká P; Maxa J; Švecová J; Talár J; Binar T; Bayer R; Bača P; Dostalová P; Švarc J
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Prandtl's Theory in the Design of an Experimental Chamber for Static Pressure Measurements.
    Šabacká P; Neděla V; Maxa J; Bayer R
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Supersonic Flow in Scintillator Detector Apertures on the Resulting Pumping Effect of the Vacuum Chambers.
    Maxa J; Neděla V; Šabacká P; Binar T
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope.
    Šabacká P; Maxa J; Bayer R; Vyroubal P; Binar T
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analysis of Supersonic Flow in Atmospheric and Low Pressure in the Region of Shock Waves Creation for Electron Microscopy.
    Šabacká P; Maxa J; Bayer R; Binar T; Bača P; Dostalová P; Mačák M; Čudek P
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFD Analyses of Density Gradients under Conditions of Supersonic Flow at Low Pressures.
    Bayer R; Bača P; Maxa J; Šabacká P; Binar T; Vyroubal P
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evaluation of environmental scanning electron microscopes at high chamber pressure.
    Fitzek H; Schroettner H; Wagner J; Hofer F; Rattenberger J
    J Microsc; 2015 Nov; 260(2):133-9. PubMed ID: 26173072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimum beam transfer in the environmental scanning electron microscope.
    Danilatos GD
    J Microsc; 2009 Apr; 234(1):26-37. PubMed ID: 19335454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular supersonic nozzle for the stable laser-driven electron acceleration.
    Lei Z; Jin Z; Gu YJ; Sato S; Zhidkov A; Rondepierre A; Huang K; Nakanii N; Daito I; Kando M; Hosokai T
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38259162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Harvesting Using Thermocouple and Compressed Air.
    Bayer R; Maxa J; Šabacká P
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental data and model simulations of beam spread in the environmental scanning electron microscope.
    Wight SA
    Scanning; 2001; 23(5):320-7. PubMed ID: 11587325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A free jet (supersonic), molecular beam source with automatized, 50 nm precision nozzle-skimmer positioning.
    Eder SD; Samelin B; Bracco G; Ansperger K; Holst B
    Rev Sci Instrum; 2013 Sep; 84(9):093303. PubMed ID: 24089819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle.
    Sawakuchi GO; Mirkovic D; Perles LA; Sahoo N; Zhu XR; Ciangaru G; Suzuki K; Gillin MT; Mohan R; Titt U
    Med Phys; 2010 Sep; 37(9):4960-70. PubMed ID: 20964215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state.
    Neděla V; Tihlaříková E; Maxa J; Imrichová K; Bučko M; Gemeiner P
    Ultramicroscopy; 2020 Apr; 211():112954. PubMed ID: 32018072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of gas backing pressure and geometry of conical nozzle on the formation of methane clusters in supersonic jets.
    Lu H; Chen G; Ni G; Li R; Xu Z
    J Phys Chem A; 2010 Jan; 114(1):2-9. PubMed ID: 19957980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nozzle for high-density supersonic gas jets at elevated temperatures.
    Heyl CM; Schoun SB; Porat G; Green H; Ye J
    Rev Sci Instrum; 2018 Nov; 89(11):113114. PubMed ID: 30501290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse Flow Pressure Limiting Aperture.
    Danilatos GD
    Microsc Microanal; 2000 Jan; 6(1):21-30. PubMed ID: 10675440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.
    Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA
    J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.