These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38610379)

  • 1. Deep Ordinal Classification in Forest Areas Using Light Detection and Ranging Point Clouds.
    Morales-Martín A; Mesas-Carrascosa FJ; Gutiérrez PA; Pérez-Porras FJ; Vargas VM; Hervás-Martínez C
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FWNet: Semantic Segmentation for Full-Waveform LiDAR Data Using Deep Learning.
    Shinohara T; Xiu H; Matsuoka M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data.
    Tarsha Kurdi F; Amakhchan W; Gharineiat Z; Boulaassal H; El Kharki O
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airborne LiDAR point cloud classification using PointNet++ network with full neighborhood features.
    Nong X; Bai W; Liu G
    PLoS One; 2023; 18(2):e0280346. PubMed ID: 36763685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Ensemble Deep Learning Approach for Semantic Point Cloud Segmentation Based on 3D Geometric Features and Range Images.
    Atik ME; Duran Z
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Estimation method of urban green space living vegetation volume based on backpack light detection and ranging].
    Li XX; Tang LY; Peng W; Chen JX; Ma X
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2777-2784. PubMed ID: 36384614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Country-wide data of ecosystem structure from the third Dutch airborne laser scanning survey.
    Kissling WD; Shi Y; Koma Z; Meijer C; Ku O; Nattino F; Seijmonsbergen AC; Grootes MW
    Data Brief; 2023 Feb; 46():108798. PubMed ID: 36569534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications.
    Adnan M; Slavic G; Martin Gomez D; Marcenaro L; Regazzoni C
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrastive Learning for 3D Point Clouds Classification and Shape Completion.
    Nazir D; Afzal MZ; Pagani A; Liwicki M; Stricker D
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning on Point Clouds and Its Application: A Survey.
    Liu W; Sun J; Li W; Hu T; Wang P
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31561639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Airborne LiDAR Data and Imagery for Suburban Land Cover Classification Using Machine Learning Methods.
    Mo Y; Zhong R; Sun H; Wu Q; Du L; Geng Y; Cao S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion.
    Du J; Jiang Z; Huang S; Wang Z; Su J; Su S; Wu Y; Cai G
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation of LiDAR point cloud data in urban areas using adaptive neighborhood selection technique.
    Chakraborty D; Dey EK
    PLoS One; 2024; 19(7):e0307138. PubMed ID: 39024214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active 3D Imaging of Vegetation based on Multi-Wavelength Fluorescence LiDAR.
    Zhao X; Shi S; Yang J; Gong W; Sun J; Chen B; Guo K; Chen B
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning for LiDAR Point Cloud Classification in Remote Sensing.
    Diab A; Kashef R; Shaker A
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Applied to Vegetation Identification and Removal Using Multidimensional Aerial Data.
    F Pinto M; G Melo A; M Honório L; L M Marcato A; G S Conceição A; O Timotheo A
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Classification Method of Point Clouds of Transmission Line Corridor Based on Improved Random Forest and Multi-Scale Features.
    Tang Q; Zhang L; Lan G; Shi X; Duanmu X; Chen K
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Road Environment Semantic Segmentation with Deep Learning from MLS Point Cloud Data.
    Balado J; Martínez-Sánchez J; Arias P; Novo A
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Motion Segmentation of LiDAR Point Cloud Based on a Combination of Probabilistic and Evidential Approaches for Intelligent Vehicles.
    Jo K; Lee S; Kim C; Sunwoo M
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.