These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38610443)
1. Innovative Metaheuristic Optimization Approach with a Bi-Triad for Rehabilitation Exoskeletons. Sosa Méndez D; García Cena CE; Bedolla-Martínez D; Martín González A Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610443 [TBL] [Abstract][Full Text] [Related]
2. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton. Wang W; He Y; Li F; Li J; Liu J; Wu X Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239 [TBL] [Abstract][Full Text] [Related]
3. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. Hussain F; Goecke R; Mohammadian M Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562 [TBL] [Abstract][Full Text] [Related]
4. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related]
5. Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach. Gupta S; Agrawal A; Singla E Disabil Rehabil Assist Technol; 2024 Jan; 19(1):139-153. PubMed ID: 35549593 [TBL] [Abstract][Full Text] [Related]
6. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
7. Development and Validation of a Kinematically Accurate Upper-Limb Exoskeleton Digital Twin for Stroke Rehabilitation. Ratschat A; Lomba TMC; Gasperina SD; Marchal-Crespo L IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941263 [TBL] [Abstract][Full Text] [Related]
8. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation. Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846 [TBL] [Abstract][Full Text] [Related]
9. An Optimized Stimulation Control System for Upper Limb Exoskeleton Robot-Assisted Rehabilitation Using a Fuzzy Logic-Based Pain Detection Approach. Abdallah IB; Bouteraa Y Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400205 [TBL] [Abstract][Full Text] [Related]
10. Multivariate analysis of the kinematics of an upper limb rehabilitation robot. Sobiech M; Michnik A; Chuchnowska I; Karpiel I; Wolański W Acta Bioeng Biomech; 2024 Jun; 26(1):55-66. PubMed ID: 39219081 [No Abstract] [Full Text] [Related]
11. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation]. Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106 [TBL] [Abstract][Full Text] [Related]
12. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
13. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies. Proietti T; Crocher V; Roby-Brami A; Jarrasse N IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194 [TBL] [Abstract][Full Text] [Related]
14. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism. Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953 [TBL] [Abstract][Full Text] [Related]
15. Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation. Falkowski P; Osiak T; Wilk J; Prokopiuk N; Leczkowski B; Pilat Z; Rzymkowski C Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679706 [TBL] [Abstract][Full Text] [Related]
16. ALICE: Conceptual Development of a Lower Limb Exoskeleton Robot Driven by an On-Board Musculoskeletal Simulator. Cardona M; García Cena CE; Serrano F; Saltaren R Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023988 [TBL] [Abstract][Full Text] [Related]
17. A New Design Scheme for Intelligent Upper Limb Rehabilitation Training Robot. Zhao Y; Liang C; Gu Z; Zheng Y; Wu Q Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32344651 [TBL] [Abstract][Full Text] [Related]
18. Development of the Biomech-Wrist: A 3-DOF Exoskeleton for Rehabilitation and Training of Human Wrist. Garcia-Leal R; Cruz-Ortiz D; Ballesteros M; Huegel JC IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941273 [TBL] [Abstract][Full Text] [Related]
19. Design, Development, and Testing of an Intelligent Wearable Robotic Exoskeleton Prototype for Upper Limb Rehabilitation. Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450853 [TBL] [Abstract][Full Text] [Related]
20. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Zhang F; Fu Y; Zhang Q; Wang S Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]