These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea ( Quirós Vargas JJ; Zhang C; Smitchger JA; McGee RJ; Sankaran S Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052251 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Roy DP; Kovalskyy V; Zhang HK; Vermote EF; Yan L; Kumar SS; Egorov A Remote Sens Environ; 2016 Jan; Volume 185(Iss 1):57-70. PubMed ID: 32020954 [TBL] [Abstract][Full Text] [Related]
4. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data]. Taddei R Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688 [TBL] [Abstract][Full Text] [Related]
6. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. Tan C; Zhou X; Zhang P; Wang Z; Wang D; Guo W; Yun F PLoS One; 2020; 15(3):e0228500. PubMed ID: 32160185 [TBL] [Abstract][Full Text] [Related]
7. Sources of Variation in Assessing Canopy Reflectance of Processing Tomato by Means of Multispectral Radiometry. Gianquinto G; Orsini F; Pennisi G; Bona S Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31683546 [TBL] [Abstract][Full Text] [Related]
8. [Cross comparison of ASTER and Landsat ETM+ multispectral measurements for NDVI and SAVI vegetation indices]. Xu HQ; Zhang TJ Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jul; 31(7):1902-7. PubMed ID: 21942048 [TBL] [Abstract][Full Text] [Related]
9. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra. Huang W; Huang J; Wang X; Wang F; Shi J Sensors (Basel); 2013 Nov; 13(12):16023-50. PubMed ID: 24287529 [TBL] [Abstract][Full Text] [Related]
10. Monitoring Winter Stress Vulnerability of High-Latitude Understory Vegetation Using Intraspecific Trait Variability and Remote Sensing Approaches. Ritz E; Bjerke JW; Tømmervik H Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32276455 [TBL] [Abstract][Full Text] [Related]
11. Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. Estévez J; Salinero-Delgado M; Berger K; Pipia L; Rivera-Caicedo JP; Wocher M; Reyes-Muñoz P; Tagliabue G; Boschetti M; Verrelst J Remote Sens Environ; 2022 May; 273():112958. PubMed ID: 36081832 [TBL] [Abstract][Full Text] [Related]
12. Remote sensing estimation of the biomass of floating Ulva prolifera and analysis of the main factors driving the interannual variability of the biomass in the Yellow Sea. Xiao Y; Zhang J; Cui T; Gong J; Liu R; Chen X; Liang X Mar Pollut Bull; 2019 Mar; 140():330-340. PubMed ID: 30803652 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Proximal and Remote Sensing for the Diagnosis of Crop Status in Site-Specific Crop Management. Mezera J; Lukas V; Horniaček I; Smutný V; Elbl J Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009565 [TBL] [Abstract][Full Text] [Related]
14. Integration of Radiometric Ground-Based Data and High-Resolution QuickBird Imagery with Multivariate Modeling to Estimate Maize Traits in the Nile Delta of Egypt. Elmetwalli AH; Tyler AN; Moghanm FS; Alamri SAM; Eid EM; Elsayed S Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34204099 [TBL] [Abstract][Full Text] [Related]
15. Irrigated Crop Types Mapping in Tashkent Province of Uzbekistan with Remote Sensing-Based Classification Methods. Erdanaev E; Kappas M; Wyss D Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957240 [TBL] [Abstract][Full Text] [Related]
16. The Study on the Relationship between Normalized Difference Vegetation Index and Fractional Green Canopy Cover in Five Selected Crops. Lykhovyd PV; Vozhehova RA; Lavrenko SO; Lavrenko NM ScientificWorldJournal; 2022; 2022():8479424. PubMed ID: 35356156 [TBL] [Abstract][Full Text] [Related]
17. Enhancing estimation of cover crop biomass using field-based high-throughput phenotyping and machine learning models. Bai G; Koehler-Cole K; Scoby D; Thapa VR; Basche A; Ge Y Front Plant Sci; 2023; 14():1277672. PubMed ID: 38259938 [TBL] [Abstract][Full Text] [Related]
18. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor. Nguyen HC; Jung J; Lee J; Choi SU; Hong SY; Heo J Sensors (Basel); 2015 Jul; 15(8):18865-86. PubMed ID: 26263996 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity of Vegetation Indices for Estimating Vegetative N Status in Winter Wheat. Prey L; Schmidhalter U Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31461857 [TBL] [Abstract][Full Text] [Related]
20. A new approach to quantify chlorophyll-a over inland water targets based on multi-source remote sensing data. Wang J; Chen X Sci Total Environ; 2024 Jan; 906():167631. PubMed ID: 37806589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]