These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38611166)

  • 1. Estimation of Environmental Effects and Response Time in Gas-Phase Explosives Detection Using Photoluminescence Quenching Method.
    Noh D; Oh E
    Polymers (Basel); 2024 Mar; 16(7):. PubMed ID: 38611166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Air Flow on Luminescence Quenching in Polymer Films towards Explosives Detection Using Drones.
    Noh D; Ampadu EK; Oh E
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal control of organic semiconductors for trace detection of explosives.
    Ogugu EB; Gillanders RN; Mohammed S; Turnbull GA
    Phys Chem Chem Phys; 2023 Nov; 25(43):29548-29555. PubMed ID: 37905793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anthracene and tetraphenylsilane based conjugated porous polymer nanoparticles for sensitive detection of nitroaromatics in water.
    Sun X; Cui Q; Dong W; Duan Q; Fei T
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123667. PubMed ID: 38000326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution.
    Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct detection of RDX vapor using a conjugated polymer network.
    Gopalakrishnan D; Dichtel WR
    J Am Chem Soc; 2013 Jun; 135(22):8357-62. PubMed ID: 23641956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling oxygen and water vapor effects on optoelectronic properties of monolayer tungsten disulfide.
    Zhang H; Dunklin JR; Reid OG; Yun SJ; Nanayakkara SU; Lee YH; Blackburn JL; Miller EM
    Nanoscale; 2020 Apr; 12(15):8344-8354. PubMed ID: 32236241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.
    Ali MA; Shoaee S; Fan S; Burn PL; Gentle IR; Meredith P; Shaw PE
    Chemphyschem; 2016 Nov; 17(21):3350-3353. PubMed ID: 27583839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films.
    Shaw PE; Cavaye H; Chen SS; James M; Gentle IR; Burn PL
    Phys Chem Chem Phys; 2013 Jun; 15(24):9845-53. PubMed ID: 23676991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perylene Diimide Based Fluorescent Sensors for Drug Simulant Detection: The Effect of Alkyl-Chain Branching on Film Morphology, Exciton Diffusion, Vapor Diffusion, and Sensing Response.
    Chen M; Chu R; Kistemaker JCM; Burn PL; Gentle IR; Shaw PE
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56386-56396. PubMed ID: 37982219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vapor-phase transport of explosives from buried sources in soils.
    Ravikrishna R; Valsaraj KT; Price CB; Brannon JM; Hayes CA; Yost SL
    J Air Waste Manag Assoc; 2004 Dec; 54(12):1525-33. PubMed ID: 15648390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Chemical Gas Vapor Sensor Based on Photoluminescence Enhancement of Rugate Porous Silicon Filters.
    Zhou Z; Sohn H
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of nitroaromatic compounds based on phenylethylene-derivatized porous silicon.
    Um S; Hwang M; Cho H; Woo HG; Sohn H
    J Nanosci Nanotechnol; 2012 May; 12(5):4199-202. PubMed ID: 22852372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing.
    Mercado C; Seeley Z; Bandyopadhyay A; Bose S; McHale JL
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2281-8. PubMed ID: 21702459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luminescence-based methods for sensing and detection of explosives.
    Meaney MS; McGuffin VL
    Anal Bioanal Chem; 2008 Aug; 391(7):2557-76. PubMed ID: 18587566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly stable and recoverable humidity sensor using fluorescent quantum dot film.
    Xia P; Shou Q; Wang T; Yang G; Li H; Li Q; Chen Y; Xie T; Huang J; Xing X
    Opt Lett; 2022 Jun; 47(11):2674-2677. PubMed ID: 35648902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible temperature-dependent photoluminescence in semiconductor quantum dots for the development of a smartphone-based optical thermometer.
    Kumbhakar P; Roy Karmakar A; Das GP; Chakraborty J; Tiwary CS; Kumbhakar P
    Nanoscale; 2021 Feb; 13(5):2946-2954. PubMed ID: 33503086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards the Development of a Low-Cost Device for the Detection of Explosives Vapors by Fluorescence Quenching of Conjugated Polymers in Solid Matrices.
    Martelo LM; das Neves TFP; Figueiredo J; Marques L; Fedorov A; Charas A; Berberan-Santos MN; Burrows HD
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity.
    Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L
    J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.