These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38611213)

  • 21. Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study.
    Kabir G; Mohd Din AT; Hameed BH
    Bioresour Technol; 2017 Oct; 241():563-572. PubMed ID: 28601774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil.
    Kurańska M; Barczewski R; Barczewski M; Prociak A; Polaczek K
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and Characterization of Biomass Tannin-Based Flexible Foam Insoles for Athletes.
    Zuo Z; Liu B; Essawy H; Huang Z; Tang J; Miao Z; Chen F; Zhang J
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and Effect of Methyl-Oleate-Based Polyol on the Properties of Rigid Polyurethane Foams as Potential Thermal Insulation Material.
    Kamairudin N; Abdullah LC; Hoong SS; Biak DRA; Ariffin H
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradable, Flame-Retardant, and Bio-Based Rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application.
    Borowicz M; Paciorek-Sadowska J; Lubczak J; Czupryński B
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31694273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scale-Up and Testing of Polyurethane Bio-Foams as Potential Cryogenic Insulation Materials.
    Kurańska M; Cabulis U; Prociak A; Polaczek K; Uram K; Kirpluks M
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural Oil-Based Rigid Polyurethane Foam Thermal Insulation Applicable at Cryogenic Temperatures.
    Uram K; Prociak A; Vevere L; Pomilovskis R; Cabulis U; Kirpluks M
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds.
    Kim SJ; Jung SH; Kim JS
    Bioresour Technol; 2010 Dec; 101(23):9294-300. PubMed ID: 20667720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.
    Omoriyekomwan JE; Tahmasebi A; Yu J
    Bioresour Technol; 2016 May; 207():188-96. PubMed ID: 26890793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams.
    Kurańska M; Leszczyńska M; Malewska E; Prociak A; Ryszkowska J
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Production of Phenol-Rich Bio-Oil From Corn Straw Waste by Direct Microwave Pyrolysis Without Extra Catalyst.
    Zhao Z; Jiang Z; Xu H; Yan K
    Front Chem; 2021; 9():700887. PubMed ID: 34277570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and Properties of the 3-pentadecyl-phenol In Situ Modified Foamable Phenolic Resin.
    Ge T; Tang K; Yu Y; Tan X
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrolysis of Date palm waste in a fixed-bed reactor: Characterization of pyrolytic products.
    Bensidhom G; Ben Hassen-Trabelsi A; Alper K; Sghairoun M; Zaafouri K; Trabelsi I
    Bioresour Technol; 2018 Jan; 247():363-369. PubMed ID: 28954249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-Based Alternatives to Phenol and Formaldehyde for the Production of Resins.
    Sarika PR; Nancarrow P; Khansaheb A; Ibrahim T
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32998463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-Based Rigid Polyurethane Foams Modified with Phosphorus Flame Retardants.
    Zemła M; Prociak A; Michałowski S
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical characterization of bio-oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.
    Tessarolo NS; dos Santos LR; Silva RS; Azevedo DA
    J Chromatogr A; 2013 Mar; 1279():68-75. PubMed ID: 23357744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber.
    Chong YY; Thangalazhy-Gopakumar S; Ng HK; Lee LY; Gan S
    J Environ Manage; 2019 Oct; 247():38-45. PubMed ID: 31229784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production.
    Kabir G; Mohd Din AT; Hameed BH
    Bioresour Technol; 2018 Feb; 249():42-48. PubMed ID: 29040858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of Oil Palm Waste Nanoparticles on the Properties and Characterization of Hybrid Plywood Biocomposites.
    Nuryawan A; Abdullah CK; Hazwan CM; Olaiya NG; Yahya EB; Risnasari I; Masruchin N; Baharudin MS; Khalid H; Abdul Khalil HPS
    Polymers (Basel); 2020 Apr; 12(5):. PubMed ID: 32349385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapeseed Oil as Feedstock for Bio-Based Thermoset Foams Obtained via Michael Addition Reaction.
    Kirpluks M; Abolins A; Eihe D; Pomilovskis R; Fridrihsone A
    Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.